Loading…
Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM‑5
Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity...
Saved in:
Published in: | Journal of the American Chemical Society 2013-07, Vol.135 (30), p.11087-11099 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat –1 h–1, respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C–C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja403060n |