Loading…
The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses
Few investigations have addressed the interaction between soil surface water regimes and raindrop impact on nutrient losses, especially under artesian seepage condition. A simulation study was conducted to examine the effects on nitrogen and phosphorus losses. Four soil surface water regimes were de...
Saved in:
Published in: | Natural hazards (Dordrecht) 2013-06, Vol.67 (2), p.411-430 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Few investigations have addressed the interaction between soil surface water regimes and raindrop impact on nutrient losses, especially under artesian seepage condition. A simulation study was conducted to examine the effects on nitrogen and phosphorus losses. Four soil surface water regimes were designed: free drainage, saturation with rainfall, artesian seepage without rainfall, and artesian seepage with rainfall. These water regimes were subjected to two surface treatments: with and without raindrop impact through placing nylon net over soil pan. The results showed saturation and seepage with rainfall conditions induced greater soil loss and nutrient losses than free drainage condition. Nutrient concentrations in runoff from artesian seepage without rainfall condition were 7.3–228.7 times those from free drainage condition. Nutrient losses by runoff from saturation and seepage with rainfall conditions increased by factors of 1.30–9.38 and 2.81–40.11 times, and the corresponding losses with eroded sediment by 1.37–7.67 and 1.75–9.0 times, respectively, relative to those from free drainage condition. Regardless of different soil surface water regimes, raindrop impact increased 20.90–94.0 % nutrient losses with eroded sediment by promoting soil loss, but it only significantly enhanced nutrient transport to runoff under free drainage condition. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-013-0570-9 |