Loading…
Simulation of multilevel cell spin transfer switching in a full-Heusler alloy spin-valve nanopillar
A multilevel cell spin transfer switching process in a full-Heusler Co2FeAl0.5Si0.5 alloy spin-valve nanopillar was investigated using micromagnetic simulations. An intermediate state of two-step spin transfer magnetization switching was reported due to the four-fold magnetocrystalline anisotropy; h...
Saved in:
Published in: | Applied physics letters 2013-01, Vol.102 (4) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multilevel cell spin transfer switching process in a full-Heusler Co2FeAl0.5Si0.5 alloy spin-valve nanopillar was investigated using micromagnetic simulations. An intermediate state of two-step spin transfer magnetization switching was reported due to the four-fold magnetocrystalline anisotropy; however, we discovered the intermediate state has two possible directions of −90° and +90°, which could not be detected in the experiments due to the same resistance of the −90° state and the +90° state. The domain structures were analyzed to determine the mechanism of domain wall motion and magnetization switching under a large current. Based on two intermediate states, we reported a multilevel bit spin transfer multi-step magnetization switching by changing the magnetic anisotropy in a full-Heusler alloy nanopillar. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4789867 |