Loading…

Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere

Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a st...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2012-11, Vol.50 (11), p.2483-2491
Main Authors: Feldman, Yuri, Colonius, Tim, Pauken, Michael T, Hall, Jeffrey L, Jones, Jack A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913
cites cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913
container_end_page 2491
container_issue 11
container_start_page 2483
container_title AIAA journal
container_volume 50
creator Feldman, Yuri
Colonius, Tim
Pauken, Michael T
Hall, Jeffrey L
Jones, Jack A
description Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.J051672
format article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417869147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417869147</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgCo6rB_9BQBQ99JrKd44yrF-senAXvDXpdGXN0pOMSbe4_95eZxDRg6ci8OQtqoqQx8BOuQL5Ek7fMwXa8DtkA0qITlj15S7ZMMagA6n4ffKgtev1xY2FDbn8nHbL5OdUMvV5pNt6U64wp0DPfuyxph3mudES6Uc_L9VPdFvydwy_fCyVzl-RXqTZZ_qh5PmqTDFhxYfkXvRTw0fHekIuX59dbN9255_evNu-Ou-8sHLunHAxjkIqM1j0nLkgeBylcyFKKxCtHLgM2sTI-Yg4mgGHQWo5aucYdyBOyPND7r6Wbwu2ud-lFnCafMaytB4kGKsdSPN_yrU2oKRhK33yF70uS83rID2AAqettWJVLw4q1NJaxdjv13X5etMD629v0UN_vMVqnx4TfQt-itXnkNrvD1wrUIrddn52cD55_0fXfwJ_AsR5k00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151968883</pqid></control><display><type>article</type><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><source>Alma/SFX Local Collection</source><creator>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</creator><creatorcontrib>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</creatorcontrib><description>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051672</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Astronomical and space-research instrumentation ; Astronomy ; Balloons ; Buoyancy ; Convection ; Correlation analysis ; Cryogenic effects ; Earth, ocean, space ; Exact sciences and technology ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Heat transfer ; Lunar, planetary, and deep-space probes ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Planets, their satellites and rings. Asteroids ; Reynolds equation ; Saturn ; Solar system ; Titan ; Turbulence models</subject><ispartof>AIAA journal, 2012-11, Vol.50 (11), p.2483-2491</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</citedby><cites>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26515500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Feldman, Yuri</creatorcontrib><creatorcontrib>Colonius, Tim</creatorcontrib><creatorcontrib>Pauken, Michael T</creatorcontrib><creatorcontrib>Hall, Jeffrey L</creatorcontrib><creatorcontrib>Jones, Jack A</creatorcontrib><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><title>AIAA journal</title><description>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</description><subject>Astronomical and space-research instrumentation</subject><subject>Astronomy</subject><subject>Balloons</subject><subject>Buoyancy</subject><subject>Convection</subject><subject>Correlation analysis</subject><subject>Cryogenic effects</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Heat transfer</subject><subject>Lunar, planetary, and deep-space probes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Planets, their satellites and rings. Asteroids</subject><subject>Reynolds equation</subject><subject>Saturn</subject><subject>Solar system</subject><subject>Titan</subject><subject>Turbulence models</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgCo6rB_9BQBQ99JrKd44yrF-senAXvDXpdGXN0pOMSbe4_95eZxDRg6ci8OQtqoqQx8BOuQL5Ek7fMwXa8DtkA0qITlj15S7ZMMagA6n4ffKgtev1xY2FDbn8nHbL5OdUMvV5pNt6U64wp0DPfuyxph3mudES6Uc_L9VPdFvydwy_fCyVzl-RXqTZZ_qh5PmqTDFhxYfkXvRTw0fHekIuX59dbN9255_evNu-Ou-8sHLunHAxjkIqM1j0nLkgeBylcyFKKxCtHLgM2sTI-Yg4mgGHQWo5aucYdyBOyPND7r6Wbwu2ud-lFnCafMaytB4kGKsdSPN_yrU2oKRhK33yF70uS83rID2AAqettWJVLw4q1NJaxdjv13X5etMD629v0UN_vMVqnx4TfQt-itXnkNrvD1wrUIrddn52cD55_0fXfwJ_AsR5k00</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Feldman, Yuri</creator><creator>Colonius, Tim</creator><creator>Pauken, Michael T</creator><creator>Hall, Jeffrey L</creator><creator>Jones, Jack A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><author>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomical and space-research instrumentation</topic><topic>Astronomy</topic><topic>Balloons</topic><topic>Buoyancy</topic><topic>Convection</topic><topic>Correlation analysis</topic><topic>Cryogenic effects</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Heat transfer</topic><topic>Lunar, planetary, and deep-space probes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Planets, their satellites and rings. Asteroids</topic><topic>Reynolds equation</topic><topic>Saturn</topic><topic>Solar system</topic><topic>Titan</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldman, Yuri</creatorcontrib><creatorcontrib>Colonius, Tim</creatorcontrib><creatorcontrib>Pauken, Michael T</creatorcontrib><creatorcontrib>Hall, Jeffrey L</creatorcontrib><creatorcontrib>Jones, Jack A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldman, Yuri</au><au>Colonius, Tim</au><au>Pauken, Michael T</au><au>Hall, Jeffrey L</au><au>Jones, Jack A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</atitle><jtitle>AIAA journal</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>50</volume><issue>11</issue><spage>2483</spage><epage>2491</epage><pages>2483-2491</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051672</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2012-11, Vol.50 (11), p.2483-2491
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_1417869147
source Alma/SFX Local Collection
subjects Astronomical and space-research instrumentation
Astronomy
Balloons
Buoyancy
Convection
Correlation analysis
Cryogenic effects
Earth, ocean, space
Exact sciences and technology
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
Heat transfer
Lunar, planetary, and deep-space probes
Mathematical analysis
Mathematical models
Navier-Stokes equations
Planets, their satellites and rings. Asteroids
Reynolds equation
Saturn
Solar system
Titan
Turbulence models
title Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20Cryogenic%20Experiments%20of%20Natural%20Convection%20for%20the%20Titan%20Montgolfiere&rft.jtitle=AIAA%20journal&rft.au=Feldman,%20Yuri&rft.date=2012-11-01&rft.volume=50&rft.issue=11&rft.spage=2483&rft.epage=2491&rft.pages=2483-2491&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051672&rft_dat=%3Cproquest_aiaa_%3E1417869147%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151968883&rft_id=info:pmid/&rfr_iscdi=true