Loading…
Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere
Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a st...
Saved in:
Published in: | AIAA journal 2012-11, Vol.50 (11), p.2483-2491 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913 |
---|---|
cites | cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913 |
container_end_page | 2491 |
container_issue | 11 |
container_start_page | 2483 |
container_title | AIAA journal |
container_volume | 50 |
creator | Feldman, Yuri Colonius, Tim Pauken, Michael T Hall, Jeffrey L Jones, Jack A |
description | Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.J051672 |
format | article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417869147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417869147</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgCo6rB_9BQBQ99JrKd44yrF-senAXvDXpdGXN0pOMSbe4_95eZxDRg6ci8OQtqoqQx8BOuQL5Ek7fMwXa8DtkA0qITlj15S7ZMMagA6n4ffKgtev1xY2FDbn8nHbL5OdUMvV5pNt6U64wp0DPfuyxph3mudES6Uc_L9VPdFvydwy_fCyVzl-RXqTZZ_qh5PmqTDFhxYfkXvRTw0fHekIuX59dbN9255_evNu-Ou-8sHLunHAxjkIqM1j0nLkgeBylcyFKKxCtHLgM2sTI-Yg4mgGHQWo5aucYdyBOyPND7r6Wbwu2ud-lFnCafMaytB4kGKsdSPN_yrU2oKRhK33yF70uS83rID2AAqettWJVLw4q1NJaxdjv13X5etMD629v0UN_vMVqnx4TfQt-itXnkNrvD1wrUIrddn52cD55_0fXfwJ_AsR5k00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151968883</pqid></control><display><type>article</type><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><source>Alma/SFX Local Collection</source><creator>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</creator><creatorcontrib>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</creatorcontrib><description>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051672</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Astronomical and space-research instrumentation ; Astronomy ; Balloons ; Buoyancy ; Convection ; Correlation analysis ; Cryogenic effects ; Earth, ocean, space ; Exact sciences and technology ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Heat transfer ; Lunar, planetary, and deep-space probes ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Planets, their satellites and rings. Asteroids ; Reynolds equation ; Saturn ; Solar system ; Titan ; Turbulence models</subject><ispartof>AIAA journal, 2012-11, Vol.50 (11), p.2483-2491</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</citedby><cites>FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26515500$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Feldman, Yuri</creatorcontrib><creatorcontrib>Colonius, Tim</creatorcontrib><creatorcontrib>Pauken, Michael T</creatorcontrib><creatorcontrib>Hall, Jeffrey L</creatorcontrib><creatorcontrib>Jones, Jack A</creatorcontrib><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><title>AIAA journal</title><description>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</description><subject>Astronomical and space-research instrumentation</subject><subject>Astronomy</subject><subject>Balloons</subject><subject>Buoyancy</subject><subject>Convection</subject><subject>Correlation analysis</subject><subject>Cryogenic effects</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Heat transfer</subject><subject>Lunar, planetary, and deep-space probes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Planets, their satellites and rings. Asteroids</subject><subject>Reynolds equation</subject><subject>Saturn</subject><subject>Solar system</subject><subject>Titan</subject><subject>Turbulence models</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U2LFDEQBuAgCo6rB_9BQBQ99JrKd44yrF-senAXvDXpdGXN0pOMSbe4_95eZxDRg6ci8OQtqoqQx8BOuQL5Ek7fMwXa8DtkA0qITlj15S7ZMMagA6n4ffKgtev1xY2FDbn8nHbL5OdUMvV5pNt6U64wp0DPfuyxph3mudES6Uc_L9VPdFvydwy_fCyVzl-RXqTZZ_qh5PmqTDFhxYfkXvRTw0fHekIuX59dbN9255_evNu-Ou-8sHLunHAxjkIqM1j0nLkgeBylcyFKKxCtHLgM2sTI-Yg4mgGHQWo5aucYdyBOyPND7r6Wbwu2ud-lFnCafMaytB4kGKsdSPN_yrU2oKRhK33yF70uS83rID2AAqettWJVLw4q1NJaxdjv13X5etMD629v0UN_vMVqnx4TfQt-itXnkNrvD1wrUIrddn52cD55_0fXfwJ_AsR5k00</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Feldman, Yuri</creator><creator>Colonius, Tim</creator><creator>Pauken, Michael T</creator><creator>Hall, Jeffrey L</creator><creator>Jones, Jack A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</title><author>Feldman, Yuri ; Colonius, Tim ; Pauken, Michael T ; Hall, Jeffrey L ; Jones, Jack A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomical and space-research instrumentation</topic><topic>Astronomy</topic><topic>Balloons</topic><topic>Buoyancy</topic><topic>Convection</topic><topic>Correlation analysis</topic><topic>Cryogenic effects</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Heat transfer</topic><topic>Lunar, planetary, and deep-space probes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Planets, their satellites and rings. Asteroids</topic><topic>Reynolds equation</topic><topic>Saturn</topic><topic>Solar system</topic><topic>Titan</topic><topic>Turbulence models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldman, Yuri</creatorcontrib><creatorcontrib>Colonius, Tim</creatorcontrib><creatorcontrib>Pauken, Michael T</creatorcontrib><creatorcontrib>Hall, Jeffrey L</creatorcontrib><creatorcontrib>Jones, Jack A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldman, Yuri</au><au>Colonius, Tim</au><au>Pauken, Michael T</au><au>Hall, Jeffrey L</au><au>Jones, Jack A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere</atitle><jtitle>AIAA journal</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>50</volume><issue>11</issue><spage>2483</spage><epage>2491</epage><pages>2483-2491</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Natural convection in a spherical geometry is considered for prediction of the buoyancy of single- and double-walled balloons in a cryogenic environment such as Titan's atmosphere. The steady-state flow characteristics obtained by solving the Reynolds-averaged Navier-Strokes equations with a standard turbulence model are used to determine the net buoyancy as a function of heat input. Thermal radiation effects are shown to have a minor impact on the buoyancy, as would be expected at cryogenic conditions. The predicted buoyancy and temperature fields compare favorably with experiments preformed on a 1-m-diameter Montgolfiere prototype in a cryogenic facility. In addition, both numerical and experimental results were compared with correlations for the heat transfer coefficients for free convection internal and external to the balloon as well as in the concentric gap of the double-walled balloons. Finally, scaling issues related to inferring the performance of the full-scale Montgolfiere from the model-scale results are examined. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051672</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2012-11, Vol.50 (11), p.2483-2491 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_1417869147 |
source | Alma/SFX Local Collection |
subjects | Astronomical and space-research instrumentation Astronomy Balloons Buoyancy Convection Correlation analysis Cryogenic effects Earth, ocean, space Exact sciences and technology Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations Heat transfer Lunar, planetary, and deep-space probes Mathematical analysis Mathematical models Navier-Stokes equations Planets, their satellites and rings. Asteroids Reynolds equation Saturn Solar system Titan Turbulence models |
title | Simulation and Cryogenic Experiments of Natural Convection for the Titan Montgolfiere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20Cryogenic%20Experiments%20of%20Natural%20Convection%20for%20the%20Titan%20Montgolfiere&rft.jtitle=AIAA%20journal&rft.au=Feldman,%20Yuri&rft.date=2012-11-01&rft.volume=50&rft.issue=11&rft.spage=2483&rft.epage=2491&rft.pages=2483-2491&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051672&rft_dat=%3Cproquest_aiaa_%3E1417869147%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a384t-939ffd3457b8ea209c32fd499cf483ee84b24c67ff22deed7bebb464d69902913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151968883&rft_id=info:pmid/&rfr_iscdi=true |