Loading…
Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector
We report a ZnO-based thin film transistor UV photodetector with a back gate configuration. The thin-film transistor (TFT) aspect ratio W/L is 150 μm/5 μm and has a current on-off ratio of 1010. The detector shows UV-visible rejection ratio of 104 and cut-off wavelength of 376 nm. The device has low...
Saved in:
Published in: | Applied physics letters 2012-07, Vol.101 (3) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report a ZnO-based thin film transistor UV photodetector with a back gate configuration. The thin-film transistor (TFT) aspect ratio W/L is 150 μm/5 μm and has a current on-off ratio of 1010. The detector shows UV-visible rejection ratio of 104 and cut-off wavelength of 376 nm. The device has low dark current of 5 × 10−14 A. The persistent photoconductivity is suppressed through oxygen plasma treatment of the channel surface which significantly reduces the density of oxygen vacancy confirmed by XPS measurements. The proper gate bias-control further reduces recovery time. The UV-TFT configuration is particularly suitable for making large-area imaging arrays. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4737648 |