Loading…

Green function solution of a second-order partial differential equation and conductivity of thin films

Correct form of the Green function G of the Schrödinger equation is developed for a thin metallic film of thickness d which contains infinitesimally weak volume and surface scatterers. Conductivity σ of the film is obtained from the imaginary part of the self-energy Σ appearing in the average G and...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2012-12, Vol.2 (4), p.042145-042145-12
Main Author: Uenal, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3
cites cdi_FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3
container_end_page 042145-12
container_issue 4
container_start_page 042145
container_title AIP advances
container_volume 2
creator Uenal, B
description Correct form of the Green function G of the Schrödinger equation is developed for a thin metallic film of thickness d which contains infinitesimally weak volume and surface scatterers. Conductivity σ of the film is obtained from the imaginary part of the self-energy Σ appearing in the average G and increases smoothly with d and that density of states is not staircaselike as contrast to the usual. Examination of σ in terms of d agrees well with the experiment.
doi_str_mv 10.1063/1.4768275
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417875472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3c623c5f79b3457ab229a8ca50ec217f</doaj_id><sourcerecordid>1417875472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3</originalsourceid><addsrcrecordid>eNp9kUtLAzEQgBdRsNQe_Ad7VGE17-wepfgoFLzoOUzz0JTtpk12C_33brelCoK5ZDJ8fDOZybJrjO4xEvQB3zMpSiL5WTYimJcFJUSc_4ovs0lKS9QfVmFUslHmXqK1Te66Rrc-NHkKdTcEweWQJ6tDY4oQjY35GmLroc6Nd85G2wwPu-lg4KEx-R7ues_Wt7u9oP3yvdrXq3SVXTiok50c73H28fz0Pn0t5m8vs-njvNCM0rYwjgNfaJBOgCglYItLICAcMiUWCIHjfMGkNphhSpmsKikFpdpyToEYQ8fZ7OA1AZZqHf0K4k4F8GpIhPip9r_QtVVUC0I1d7JaUMYlLAipoNTAkdUES9e7bg6udQybzqZWrXzStq6hsaFLqu9BlpIzSXr09oDqGFKK1p1KY6T2q1FYHVfTs3cHNmnfDrM7wdsQf0C1Nu4_-K_5G9nknTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417875472</pqid></control><display><type>article</type><title>Green function solution of a second-order partial differential equation and conductivity of thin films</title><source>AIP Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Uenal, B</creator><creatorcontrib>Uenal, B</creatorcontrib><description>Correct form of the Green function G of the Schrödinger equation is developed for a thin metallic film of thickness d which contains infinitesimally weak volume and surface scatterers. Conductivity σ of the film is obtained from the imaginary part of the self-energy Σ appearing in the average G and increases smoothly with d and that density of states is not staircaselike as contrast to the usual. Examination of σ in terms of d agrees well with the experiment.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.4768275</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><subject>Green's functions ; Metal films ; Partial differential equations ; Schroedinger equation ; Thin films</subject><ispartof>AIP advances, 2012-12, Vol.2 (4), p.042145-042145-12</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3</citedby><cites>FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/adv/article-lookup/doi/10.1063/1.4768275$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Uenal, B</creatorcontrib><title>Green function solution of a second-order partial differential equation and conductivity of thin films</title><title>AIP advances</title><description>Correct form of the Green function G of the Schrödinger equation is developed for a thin metallic film of thickness d which contains infinitesimally weak volume and surface scatterers. Conductivity σ of the film is obtained from the imaginary part of the self-energy Σ appearing in the average G and increases smoothly with d and that density of states is not staircaselike as contrast to the usual. Examination of σ in terms of d agrees well with the experiment.</description><subject>Green's functions</subject><subject>Metal films</subject><subject>Partial differential equations</subject><subject>Schroedinger equation</subject><subject>Thin films</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtLAzEQgBdRsNQe_Ad7VGE17-wepfgoFLzoOUzz0JTtpk12C_33brelCoK5ZDJ8fDOZybJrjO4xEvQB3zMpSiL5WTYimJcFJUSc_4ovs0lKS9QfVmFUslHmXqK1Te66Rrc-NHkKdTcEweWQJ6tDY4oQjY35GmLroc6Nd85G2wwPu-lg4KEx-R7ues_Wt7u9oP3yvdrXq3SVXTiok50c73H28fz0Pn0t5m8vs-njvNCM0rYwjgNfaJBOgCglYItLICAcMiUWCIHjfMGkNphhSpmsKikFpdpyToEYQ8fZ7OA1AZZqHf0K4k4F8GpIhPip9r_QtVVUC0I1d7JaUMYlLAipoNTAkdUES9e7bg6udQybzqZWrXzStq6hsaFLqu9BlpIzSXr09oDqGFKK1p1KY6T2q1FYHVfTs3cHNmnfDrM7wdsQf0C1Nu4_-K_5G9nknTI</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Uenal, B</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20121201</creationdate><title>Green function solution of a second-order partial differential equation and conductivity of thin films</title><author>Uenal, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Green's functions</topic><topic>Metal films</topic><topic>Partial differential equations</topic><topic>Schroedinger equation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uenal, B</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uenal, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green function solution of a second-order partial differential equation and conductivity of thin films</atitle><jtitle>AIP advances</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>2</volume><issue>4</issue><spage>042145</spage><epage>042145-12</epage><pages>042145-042145-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Correct form of the Green function G of the Schrödinger equation is developed for a thin metallic film of thickness d which contains infinitesimally weak volume and surface scatterers. Conductivity σ of the film is obtained from the imaginary part of the self-energy Σ appearing in the average G and increases smoothly with d and that density of states is not staircaselike as contrast to the usual. Examination of σ in terms of d agrees well with the experiment.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/1.4768275</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2012-12, Vol.2 (4), p.042145-042145-12
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_miscellaneous_1417875472
source AIP Open Access Journals; Free Full-Text Journals in Chemistry
subjects Green's functions
Metal films
Partial differential equations
Schroedinger equation
Thin films
title Green function solution of a second-order partial differential equation and conductivity of thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20function%20solution%20of%20a%20second-order%20partial%20differential%20equation%20and%20conductivity%20of%20thin%20films&rft.jtitle=AIP%20advances&rft.au=Uenal,%20B&rft.date=2012-12-01&rft.volume=2&rft.issue=4&rft.spage=042145&rft.epage=042145-12&rft.pages=042145-042145-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.4768275&rft_dat=%3Cproquest_cross%3E1417875472%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-df5a5bca7f6a687a1e18a2a6f0d81600af55b47cd14133479977633ce553a2dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417875472&rft_id=info:pmid/&rfr_iscdi=true