Loading…

Temporal data mining using shape space representations of time series

Subspace representations that preserve essential information of high-dimensional data may be advantageous for many reasons such as improved interpretability, overfitting avoidance, acceleration of machine learning techniques. In this article, we describe a new subspace representation of time series...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2010-12, Vol.74 (1), p.379-393
Main Authors: Fuchs, Erich, Gruber, Thiemo, Pree, Helmuth, Sick, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3
cites cdi_FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3
container_end_page 393
container_issue 1
container_start_page 379
container_title Neurocomputing (Amsterdam)
container_volume 74
creator Fuchs, Erich
Gruber, Thiemo
Pree, Helmuth
Sick, Bernhard
description Subspace representations that preserve essential information of high-dimensional data may be advantageous for many reasons such as improved interpretability, overfitting avoidance, acceleration of machine learning techniques. In this article, we describe a new subspace representation of time series which we call polynomial shape space representation. This representation consists of optimal (in a least-squares sense) estimators of trend aspects of a time series such as average, slope, curve, change of curve, etc. The shape space representation of time series allows for a definition of a novel similarity measure for time series which we call shape space distance measure. Depending on the application, time series segmentation techniques can be applied to obtain a piecewise shape space representation of the time series in subsequent segments. In this article, we investigate the properties of the polynomial shape space representation and the shape space distance measure by means of some benchmark time series and discuss possible application scenarios in the field of temporal data mining.
doi_str_mv 10.1016/j.neucom.2010.03.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417876109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231210002237</els_id><sourcerecordid>1417876109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw89emmdJN2kvQiyrH9gwct6Dmk61SxtU5NU8NubpZ69zMDMew_ej5BbCgUFKu6PxYizcUPBIJ2AF8DYGVnRSrK8YpU4Jyuo2SZnnLJLchXCEYBKyuoV2R1wmJzXfdbqqLPBjnb8yOZwmuFTT5iFSRvMPE4eA45RR-vGkLkui3ZIX_QWwzW56HQf8OZvr8n70-6wfcn3b8-v28d9bjivY15zbDvOqo2h2tS6RCFqyoA3vG2xlCAFoJYUJGsqITF1a6BJEgFUo0TD1-RuyZ28-5oxRDXYYLDv9YhuDoqWVFZSUKiTtFykxrsQPHZq8nbQ_kdRUCdq6qgWaupETQFXiVqyPSw2TDW-LXoVjMXRYGs9mqhaZ_8P-AWv_ndy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417876109</pqid></control><display><type>article</type><title>Temporal data mining using shape space representations of time series</title><source>ScienceDirect Journals</source><creator>Fuchs, Erich ; Gruber, Thiemo ; Pree, Helmuth ; Sick, Bernhard</creator><creatorcontrib>Fuchs, Erich ; Gruber, Thiemo ; Pree, Helmuth ; Sick, Bernhard</creatorcontrib><description>Subspace representations that preserve essential information of high-dimensional data may be advantageous for many reasons such as improved interpretability, overfitting avoidance, acceleration of machine learning techniques. In this article, we describe a new subspace representation of time series which we call polynomial shape space representation. This representation consists of optimal (in a least-squares sense) estimators of trend aspects of a time series such as average, slope, curve, change of curve, etc. The shape space representation of time series allows for a definition of a novel similarity measure for time series which we call shape space distance measure. Depending on the application, time series segmentation techniques can be applied to obtain a piecewise shape space representation of the time series in subsequent segments. In this article, we investigate the properties of the polynomial shape space representation and the shape space distance measure by means of some benchmark time series and discuss possible application scenarios in the field of temporal data mining.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2010.03.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data mining ; Least squares method ; Least-squares approximation ; Orthogonal polynomials ; Polynomial shape space ; Representations ; Segments ; Similarity ; Similarity measure ; Subspace learning ; Subspaces ; Temporal data mining ; Temporal logic ; Time series</subject><ispartof>Neurocomputing (Amsterdam), 2010-12, Vol.74 (1), p.379-393</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3</citedby><cites>FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fuchs, Erich</creatorcontrib><creatorcontrib>Gruber, Thiemo</creatorcontrib><creatorcontrib>Pree, Helmuth</creatorcontrib><creatorcontrib>Sick, Bernhard</creatorcontrib><title>Temporal data mining using shape space representations of time series</title><title>Neurocomputing (Amsterdam)</title><description>Subspace representations that preserve essential information of high-dimensional data may be advantageous for many reasons such as improved interpretability, overfitting avoidance, acceleration of machine learning techniques. In this article, we describe a new subspace representation of time series which we call polynomial shape space representation. This representation consists of optimal (in a least-squares sense) estimators of trend aspects of a time series such as average, slope, curve, change of curve, etc. The shape space representation of time series allows for a definition of a novel similarity measure for time series which we call shape space distance measure. Depending on the application, time series segmentation techniques can be applied to obtain a piecewise shape space representation of the time series in subsequent segments. In this article, we investigate the properties of the polynomial shape space representation and the shape space distance measure by means of some benchmark time series and discuss possible application scenarios in the field of temporal data mining.</description><subject>Data mining</subject><subject>Least squares method</subject><subject>Least-squares approximation</subject><subject>Orthogonal polynomials</subject><subject>Polynomial shape space</subject><subject>Representations</subject><subject>Segments</subject><subject>Similarity</subject><subject>Similarity measure</subject><subject>Subspace learning</subject><subject>Subspaces</subject><subject>Temporal data mining</subject><subject>Temporal logic</subject><subject>Time series</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw89emmdJN2kvQiyrH9gwct6Dmk61SxtU5NU8NubpZ69zMDMew_ej5BbCgUFKu6PxYizcUPBIJ2AF8DYGVnRSrK8YpU4Jyuo2SZnnLJLchXCEYBKyuoV2R1wmJzXfdbqqLPBjnb8yOZwmuFTT5iFSRvMPE4eA45RR-vGkLkui3ZIX_QWwzW56HQf8OZvr8n70-6wfcn3b8-v28d9bjivY15zbDvOqo2h2tS6RCFqyoA3vG2xlCAFoJYUJGsqITF1a6BJEgFUo0TD1-RuyZ28-5oxRDXYYLDv9YhuDoqWVFZSUKiTtFykxrsQPHZq8nbQ_kdRUCdq6qgWaupETQFXiVqyPSw2TDW-LXoVjMXRYGs9mqhaZ_8P-AWv_ndy</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Fuchs, Erich</creator><creator>Gruber, Thiemo</creator><creator>Pree, Helmuth</creator><creator>Sick, Bernhard</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Temporal data mining using shape space representations of time series</title><author>Fuchs, Erich ; Gruber, Thiemo ; Pree, Helmuth ; Sick, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data mining</topic><topic>Least squares method</topic><topic>Least-squares approximation</topic><topic>Orthogonal polynomials</topic><topic>Polynomial shape space</topic><topic>Representations</topic><topic>Segments</topic><topic>Similarity</topic><topic>Similarity measure</topic><topic>Subspace learning</topic><topic>Subspaces</topic><topic>Temporal data mining</topic><topic>Temporal logic</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Erich</creatorcontrib><creatorcontrib>Gruber, Thiemo</creatorcontrib><creatorcontrib>Pree, Helmuth</creatorcontrib><creatorcontrib>Sick, Bernhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Erich</au><au>Gruber, Thiemo</au><au>Pree, Helmuth</au><au>Sick, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal data mining using shape space representations of time series</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>74</volume><issue>1</issue><spage>379</spage><epage>393</epage><pages>379-393</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Subspace representations that preserve essential information of high-dimensional data may be advantageous for many reasons such as improved interpretability, overfitting avoidance, acceleration of machine learning techniques. In this article, we describe a new subspace representation of time series which we call polynomial shape space representation. This representation consists of optimal (in a least-squares sense) estimators of trend aspects of a time series such as average, slope, curve, change of curve, etc. The shape space representation of time series allows for a definition of a novel similarity measure for time series which we call shape space distance measure. Depending on the application, time series segmentation techniques can be applied to obtain a piecewise shape space representation of the time series in subsequent segments. In this article, we investigate the properties of the polynomial shape space representation and the shape space distance measure by means of some benchmark time series and discuss possible application scenarios in the field of temporal data mining.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2010.03.022</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2010-12, Vol.74 (1), p.379-393
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1417876109
source ScienceDirect Journals
subjects Data mining
Least squares method
Least-squares approximation
Orthogonal polynomials
Polynomial shape space
Representations
Segments
Similarity
Similarity measure
Subspace learning
Subspaces
Temporal data mining
Temporal logic
Time series
title Temporal data mining using shape space representations of time series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20data%20mining%20using%20shape%20space%20representations%20of%20time%20series&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Fuchs,%20Erich&rft.date=2010-12-01&rft.volume=74&rft.issue=1&rft.spage=379&rft.epage=393&rft.pages=379-393&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2010.03.022&rft_dat=%3Cproquest_cross%3E1417876109%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-93edf3285c1ac9a4e6691203b3dde470760ea71072b867e101b0b691601ae7ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417876109&rft_id=info:pmid/&rfr_iscdi=true