Loading…

Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data

In this paper we propose a semiparametric mixed-effect least squares support vector machine (LS-SVM) regression model for the analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data. We also develop the generalized cross-validation (GCV) method for choosing the hyperparameters which affect th...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2011-10, Vol.74 (17), p.3412-3419
Main Authors: Seok, Kyung Ha, Shim, Jooyong, Cho, Daehyeon, Noh, Gyu-Jeong, Hwang, Changha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223
cites cdi_FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223
container_end_page 3419
container_issue 17
container_start_page 3412
container_title Neurocomputing (Amsterdam)
container_volume 74
creator Seok, Kyung Ha
Shim, Jooyong
Cho, Daehyeon
Noh, Gyu-Jeong
Hwang, Changha
description In this paper we propose a semiparametric mixed-effect least squares support vector machine (LS-SVM) regression model for the analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data. We also develop the generalized cross-validation (GCV) method for choosing the hyperparameters which affect the performance of the proposed LS-SVM. The performance of the proposed LS-SVM is compared with those of NONMEM and the regular semiparametric LS-SVM via four measures, which are mean squared error (MSE), mean absolute error (MAE), mean relative absolute error (MRAE) and mean relative prediction error (MRPE). Through paired- t test statistic we find that the absolute values of four measures of the proposed LS-SVM are significantly smaller than those of NONMEM for PK and PD data. We also investigate the coefficient of determinations R 2's of predicted and observed values. The R 2's of NONMEM are 0.66 and 0.59 for PK and PD data, respectively, while the R 2's of the proposed LS-SVM are 0.94 and 0.96. Through cross validation technique we also find that the proposed LS-SVM shows better generalization performance than the regular semiparametric LS-SVM for PK and PD data. These facts indicate that the proposed LS-SVM is an appealing tool for analyzing PK and PD data.
doi_str_mv 10.1016/j.neucom.2011.05.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417878553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211003389</els_id><sourcerecordid>1417878553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwByy8ZJNgO3GcbJBQxUuqxAJYW449pi551U4K5etxVcSS1VzNnbmjOQhdUpJSQovrddrBpPs2ZYTSlPCUUHaEZrQULClZWRyjGakYT1hG2Sk6C2FNCBWUVTP0-QKtG5RXLYzeady6LzAJWAt6xA2oMOKwmZSHgMM0DL0f8TZavcet0ivXAbZRq041u2_XveNhpXx0-o9ojTFPdeavZ3adamPPqFGdoxOrmgAXv3WO3u7vXhePyfL54Wlxu0x0llVjknGdVWAhE2VlCqiVrk0tBLOkyIWpuSiKitZ7CFBVBc05z-si6jrPbWkZy-bo6pA7-H4zQRhl64KGplEd9FOQNKeiFCXnWRzND6Pa9yF4sHLwrlV-JymR-xNyLQ-c5Z6zJFxGznHt5rAG8Y2tAy-DdtBpMM5HUtL07v-AH4e6i3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417878553</pqid></control><display><type>article</type><title>Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data</title><source>ScienceDirect Journals</source><creator>Seok, Kyung Ha ; Shim, Jooyong ; Cho, Daehyeon ; Noh, Gyu-Jeong ; Hwang, Changha</creator><creatorcontrib>Seok, Kyung Ha ; Shim, Jooyong ; Cho, Daehyeon ; Noh, Gyu-Jeong ; Hwang, Changha</creatorcontrib><description>In this paper we propose a semiparametric mixed-effect least squares support vector machine (LS-SVM) regression model for the analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data. We also develop the generalized cross-validation (GCV) method for choosing the hyperparameters which affect the performance of the proposed LS-SVM. The performance of the proposed LS-SVM is compared with those of NONMEM and the regular semiparametric LS-SVM via four measures, which are mean squared error (MSE), mean absolute error (MAE), mean relative absolute error (MRAE) and mean relative prediction error (MRPE). Through paired- t test statistic we find that the absolute values of four measures of the proposed LS-SVM are significantly smaller than those of NONMEM for PK and PD data. We also investigate the coefficient of determinations R 2's of predicted and observed values. The R 2's of NONMEM are 0.66 and 0.59 for PK and PD data, respectively, while the R 2's of the proposed LS-SVM are 0.94 and 0.96. Through cross validation technique we also find that the proposed LS-SVM shows better generalization performance than the regular semiparametric LS-SVM for PK and PD data. These facts indicate that the proposed LS-SVM is an appealing tool for analyzing PK and PD data.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.05.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Error analysis ; Errors ; Least squares method ; Least squares support vector machine ; Mixed-effect model ; Pharmacokinetic and pharmacodynamic data ; Regression ; Regression analysis ; Semiparametric model ; Statistics ; Support vector machines</subject><ispartof>Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3412-3419</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223</citedby><cites>FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Seok, Kyung Ha</creatorcontrib><creatorcontrib>Shim, Jooyong</creatorcontrib><creatorcontrib>Cho, Daehyeon</creatorcontrib><creatorcontrib>Noh, Gyu-Jeong</creatorcontrib><creatorcontrib>Hwang, Changha</creatorcontrib><title>Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data</title><title>Neurocomputing (Amsterdam)</title><description>In this paper we propose a semiparametric mixed-effect least squares support vector machine (LS-SVM) regression model for the analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data. We also develop the generalized cross-validation (GCV) method for choosing the hyperparameters which affect the performance of the proposed LS-SVM. The performance of the proposed LS-SVM is compared with those of NONMEM and the regular semiparametric LS-SVM via four measures, which are mean squared error (MSE), mean absolute error (MAE), mean relative absolute error (MRAE) and mean relative prediction error (MRPE). Through paired- t test statistic we find that the absolute values of four measures of the proposed LS-SVM are significantly smaller than those of NONMEM for PK and PD data. We also investigate the coefficient of determinations R 2's of predicted and observed values. The R 2's of NONMEM are 0.66 and 0.59 for PK and PD data, respectively, while the R 2's of the proposed LS-SVM are 0.94 and 0.96. Through cross validation technique we also find that the proposed LS-SVM shows better generalization performance than the regular semiparametric LS-SVM for PK and PD data. These facts indicate that the proposed LS-SVM is an appealing tool for analyzing PK and PD data.</description><subject>Error analysis</subject><subject>Errors</subject><subject>Least squares method</subject><subject>Least squares support vector machine</subject><subject>Mixed-effect model</subject><subject>Pharmacokinetic and pharmacodynamic data</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Semiparametric model</subject><subject>Statistics</subject><subject>Support vector machines</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwByy8ZJNgO3GcbJBQxUuqxAJYW449pi551U4K5etxVcSS1VzNnbmjOQhdUpJSQovrddrBpPs2ZYTSlPCUUHaEZrQULClZWRyjGakYT1hG2Sk6C2FNCBWUVTP0-QKtG5RXLYzeady6LzAJWAt6xA2oMOKwmZSHgMM0DL0f8TZavcet0ivXAbZRq041u2_XveNhpXx0-o9ojTFPdeavZ3adamPPqFGdoxOrmgAXv3WO3u7vXhePyfL54Wlxu0x0llVjknGdVWAhE2VlCqiVrk0tBLOkyIWpuSiKitZ7CFBVBc05z-si6jrPbWkZy-bo6pA7-H4zQRhl64KGplEd9FOQNKeiFCXnWRzND6Pa9yF4sHLwrlV-JymR-xNyLQ-c5Z6zJFxGznHt5rAG8Y2tAy-DdtBpMM5HUtL07v-AH4e6i3c</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Seok, Kyung Ha</creator><creator>Shim, Jooyong</creator><creator>Cho, Daehyeon</creator><creator>Noh, Gyu-Jeong</creator><creator>Hwang, Changha</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data</title><author>Seok, Kyung Ha ; Shim, Jooyong ; Cho, Daehyeon ; Noh, Gyu-Jeong ; Hwang, Changha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Error analysis</topic><topic>Errors</topic><topic>Least squares method</topic><topic>Least squares support vector machine</topic><topic>Mixed-effect model</topic><topic>Pharmacokinetic and pharmacodynamic data</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Semiparametric model</topic><topic>Statistics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok, Kyung Ha</creatorcontrib><creatorcontrib>Shim, Jooyong</creatorcontrib><creatorcontrib>Cho, Daehyeon</creatorcontrib><creatorcontrib>Noh, Gyu-Jeong</creatorcontrib><creatorcontrib>Hwang, Changha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Kyung Ha</au><au>Shim, Jooyong</au><au>Cho, Daehyeon</au><au>Noh, Gyu-Jeong</au><au>Hwang, Changha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>74</volume><issue>17</issue><spage>3412</spage><epage>3419</epage><pages>3412-3419</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper we propose a semiparametric mixed-effect least squares support vector machine (LS-SVM) regression model for the analysis of pharmacokinetic (PK) and pharmacodynamic (PD) data. We also develop the generalized cross-validation (GCV) method for choosing the hyperparameters which affect the performance of the proposed LS-SVM. The performance of the proposed LS-SVM is compared with those of NONMEM and the regular semiparametric LS-SVM via four measures, which are mean squared error (MSE), mean absolute error (MAE), mean relative absolute error (MRAE) and mean relative prediction error (MRPE). Through paired- t test statistic we find that the absolute values of four measures of the proposed LS-SVM are significantly smaller than those of NONMEM for PK and PD data. We also investigate the coefficient of determinations R 2's of predicted and observed values. The R 2's of NONMEM are 0.66 and 0.59 for PK and PD data, respectively, while the R 2's of the proposed LS-SVM are 0.94 and 0.96. Through cross validation technique we also find that the proposed LS-SVM shows better generalization performance than the regular semiparametric LS-SVM for PK and PD data. These facts indicate that the proposed LS-SVM is an appealing tool for analyzing PK and PD data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.05.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3412-3419
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1417878553
source ScienceDirect Journals
subjects Error analysis
Errors
Least squares method
Least squares support vector machine
Mixed-effect model
Pharmacokinetic and pharmacodynamic data
Regression
Regression analysis
Semiparametric model
Statistics
Support vector machines
title Semiparametric mixed-effect least squares support vector machine for analyzing pharmacokinetic and pharmacodynamic data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20mixed-effect%20least%20squares%20support%20vector%20machine%20for%20analyzing%20pharmacokinetic%20and%20pharmacodynamic%20data&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Seok,%20Kyung%20Ha&rft.date=2011-10-01&rft.volume=74&rft.issue=17&rft.spage=3412&rft.epage=3419&rft.pages=3412-3419&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.05.012&rft_dat=%3Cproquest_cross%3E1417878553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-35c39efe3789d6ebacbdb772f0647db576691b1016e99614554b66e9b44f8f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417878553&rft_id=info:pmid/&rfr_iscdi=true