Loading…

Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition

During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2013-08, Vol.40 (8), p.811-822
Main Authors: Jia, Xianghui, Wei, Na, Wang, Tianyv, Wang, Haoyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993
cites cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993
container_end_page 822
container_issue 8
container_start_page 811
container_title Journal of industrial microbiology & biotechnology
container_volume 40
creator Jia, Xianghui
Wei, Na
Wang, Tianyv
Wang, Haoyong
description During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.
doi_str_mv 10.1007/s10295-013-1287-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419360253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419360253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEohd4ADZgCSGxCfgaJ0tUlYJUiQU9m24sJxmfukrs4nGEziPw1jjK4SIWrMbSfP8_4_mr6gWj7xil-j0yyjtVUyZqxltds0fVKZO6qZUS6nF5i0bXSgp1Up0h3lNKldb8aXXChaZcaXla_dghkOiIDeTytr4Jqu4twkiSDWOcybxku4cA6JHgATPMJEcyJLAZiCW3hznOMVgkc-z9VKDvPt8R9PvgnR9syAWfoJgNsArvio5gToBYJo5ktlNYcvLZx_CseuLshPD8WM-r3cfLm4tP9fWXq88XH67rQYku10MrLYyMAZNKs1HylnespWPTgeul7nqgIBW01upeOmcbcAqAMj32YmBdJ86rt5vvQ4rfFsBsZo8DTJMNEBc0TLJONOU8oqCv_0Hv45JC2a5QlDZUinal2EYNKSImcOYh-dmmg2HUrDmZLSdTcjJrToYVzcuj89LPMP5W_AqmAG-OgMXBTm49occ_nFadErIpHN84LK2wh_TXiv-Z_moTORuN3adivPvK6fonqriiSvwEKO60-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400604383</pqid></control><display><type>article</type><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><source>Open Access: Oxford University Press Open Journals</source><source>ABI/INFORM Global</source><creator>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</creator><creatorcontrib>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</creatorcontrib><description>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-013-1287-1</identifier><identifier>PMID: 23702574</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; Analysis ; Bacteria ; Biochemistry ; Bioenergy/Biofuels/Biochemicals ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Culture Media ; Dehydrogenases ; DNA Transposable Elements ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Ethanol ; Ethanol - metabolism ; ethanol production ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic Engineering ; Genomes ; Glucose ; Glucose - metabolism ; Heat ; Heat shock proteins ; heat stress ; Heat tolerance ; Heat-Shock Proteins - genetics ; High temperature ; Hot Temperature ; Inorganic Chemistry ; Life Sciences ; Malnutrition ; Microbiology ; Mutagenesis ; nutrient requirements ; Nutritional requirements ; Operon ; Plasmids ; Pyrococcus furiosus ; Stress, Physiological - genetics ; Studies ; temperature ; transposons ; Yeast ; Zymomonas - genetics ; Zymomonas - growth &amp; development ; Zymomonas - metabolism ; Zymomonas mobilis</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2013-08, Vol.40 (8), p.811-822</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</citedby><cites>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1400604383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1400604383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27595346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23702574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Xianghui</creatorcontrib><creatorcontrib>Wei, Na</creatorcontrib><creatorcontrib>Wang, Tianyv</creatorcontrib><creatorcontrib>Wang, Haoyong</creatorcontrib><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioenergy/Biofuels/Biochemicals</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Culture Media</subject><subject>Dehydrogenases</subject><subject>DNA Transposable Elements</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins - genetics</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Malnutrition</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>nutrient requirements</subject><subject>Nutritional requirements</subject><subject>Operon</subject><subject>Plasmids</subject><subject>Pyrococcus furiosus</subject><subject>Stress, Physiological - genetics</subject><subject>Studies</subject><subject>temperature</subject><subject>transposons</subject><subject>Yeast</subject><subject>Zymomonas - genetics</subject><subject>Zymomonas - growth &amp; development</subject><subject>Zymomonas - metabolism</subject><subject>Zymomonas mobilis</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kctu1TAQhiMEohd4ADZgCSGxCfgaJ0tUlYJUiQU9m24sJxmfukrs4nGEziPw1jjK4SIWrMbSfP8_4_mr6gWj7xil-j0yyjtVUyZqxltds0fVKZO6qZUS6nF5i0bXSgp1Up0h3lNKldb8aXXChaZcaXla_dghkOiIDeTytr4Jqu4twkiSDWOcybxku4cA6JHgATPMJEcyJLAZiCW3hznOMVgkc-z9VKDvPt8R9PvgnR9syAWfoJgNsArvio5gToBYJo5ktlNYcvLZx_CseuLshPD8WM-r3cfLm4tP9fWXq88XH67rQYku10MrLYyMAZNKs1HylnespWPTgeul7nqgIBW01upeOmcbcAqAMj32YmBdJ86rt5vvQ4rfFsBsZo8DTJMNEBc0TLJONOU8oqCv_0Hv45JC2a5QlDZUinal2EYNKSImcOYh-dmmg2HUrDmZLSdTcjJrToYVzcuj89LPMP5W_AqmAG-OgMXBTm49occ_nFadErIpHN84LK2wh_TXiv-Z_moTORuN3adivPvK6fonqriiSvwEKO60-Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Jia, Xianghui</creator><creator>Wei, Na</creator><creator>Wang, Tianyv</creator><creator>Wang, Haoyong</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130801</creationdate><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><author>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioenergy/Biofuels/Biochemicals</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Culture Media</topic><topic>Dehydrogenases</topic><topic>DNA Transposable Elements</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins - genetics</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Malnutrition</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>nutrient requirements</topic><topic>Nutritional requirements</topic><topic>Operon</topic><topic>Plasmids</topic><topic>Pyrococcus furiosus</topic><topic>Stress, Physiological - genetics</topic><topic>Studies</topic><topic>temperature</topic><topic>transposons</topic><topic>Yeast</topic><topic>Zymomonas - genetics</topic><topic>Zymomonas - growth &amp; development</topic><topic>Zymomonas - metabolism</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xianghui</creatorcontrib><creatorcontrib>Wei, Na</creatorcontrib><creatorcontrib>Wang, Tianyv</creatorcontrib><creatorcontrib>Wang, Haoyong</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xianghui</au><au>Wei, Na</au><au>Wang, Tianyv</au><au>Wang, Haoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>40</volume><issue>8</issue><spage>811</spage><epage>822</epage><pages>811-822</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23702574</pmid><doi>10.1007/s10295-013-1287-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2013-08, Vol.40 (8), p.811-822
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1419360253
source Open Access: Oxford University Press Open Journals; ABI/INFORM Global
subjects Amino acids
Analysis
Bacteria
Biochemistry
Bioenergy/Biofuels/Biochemicals
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
Culture Media
Dehydrogenases
DNA Transposable Elements
E coli
Escherichia coli
Escherichia coli - genetics
Ethanol
Ethanol - metabolism
ethanol production
Fermentation
Fundamental and applied biological sciences. Psychology
Genes
Genetic Engineering
Genomes
Glucose
Glucose - metabolism
Heat
Heat shock proteins
heat stress
Heat tolerance
Heat-Shock Proteins - genetics
High temperature
Hot Temperature
Inorganic Chemistry
Life Sciences
Malnutrition
Microbiology
Mutagenesis
nutrient requirements
Nutritional requirements
Operon
Plasmids
Pyrococcus furiosus
Stress, Physiological - genetics
Studies
temperature
transposons
Yeast
Zymomonas - genetics
Zymomonas - growth & development
Zymomonas - metabolism
Zymomonas mobilis
title Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20an%20EZ-Tn5-based%20random%20mutagenesis%20system%20to%20create%20a%20Zymomonas%20mobilis%20with%20significant%20tolerance%20to%20heat%20stress%20and%20malnutrition&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Jia,%20Xianghui&rft.date=2013-08-01&rft.volume=40&rft.issue=8&rft.spage=811&rft.epage=822&rft.pages=811-822&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-013-1287-1&rft_dat=%3Cproquest_cross%3E1419360253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1400604383&rft_id=info:pmid/23702574&rfr_iscdi=true