Loading…
Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition
During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobi...
Saved in:
Published in: | Journal of industrial microbiology & biotechnology 2013-08, Vol.40 (8), p.811-822 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993 |
container_end_page | 822 |
container_issue | 8 |
container_start_page | 811 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 40 |
creator | Jia, Xianghui Wei, Na Wang, Tianyv Wang, Haoyong |
description | During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l. |
doi_str_mv | 10.1007/s10295-013-1287-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419360253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419360253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEohd4ADZgCSGxCfgaJ0tUlYJUiQU9m24sJxmfukrs4nGEziPw1jjK4SIWrMbSfP8_4_mr6gWj7xil-j0yyjtVUyZqxltds0fVKZO6qZUS6nF5i0bXSgp1Up0h3lNKldb8aXXChaZcaXla_dghkOiIDeTytr4Jqu4twkiSDWOcybxku4cA6JHgATPMJEcyJLAZiCW3hznOMVgkc-z9VKDvPt8R9PvgnR9syAWfoJgNsArvio5gToBYJo5ktlNYcvLZx_CseuLshPD8WM-r3cfLm4tP9fWXq88XH67rQYku10MrLYyMAZNKs1HylnespWPTgeul7nqgIBW01upeOmcbcAqAMj32YmBdJ86rt5vvQ4rfFsBsZo8DTJMNEBc0TLJONOU8oqCv_0Hv45JC2a5QlDZUinal2EYNKSImcOYh-dmmg2HUrDmZLSdTcjJrToYVzcuj89LPMP5W_AqmAG-OgMXBTm49occ_nFadErIpHN84LK2wh_TXiv-Z_moTORuN3adivPvK6fonqriiSvwEKO60-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400604383</pqid></control><display><type>article</type><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><source>Open Access: Oxford University Press Open Journals</source><source>ABI/INFORM Global</source><creator>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</creator><creatorcontrib>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</creatorcontrib><description>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-013-1287-1</identifier><identifier>PMID: 23702574</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amino acids ; Analysis ; Bacteria ; Biochemistry ; Bioenergy/Biofuels/Biochemicals ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Culture Media ; Dehydrogenases ; DNA Transposable Elements ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Ethanol ; Ethanol - metabolism ; ethanol production ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic Engineering ; Genomes ; Glucose ; Glucose - metabolism ; Heat ; Heat shock proteins ; heat stress ; Heat tolerance ; Heat-Shock Proteins - genetics ; High temperature ; Hot Temperature ; Inorganic Chemistry ; Life Sciences ; Malnutrition ; Microbiology ; Mutagenesis ; nutrient requirements ; Nutritional requirements ; Operon ; Plasmids ; Pyrococcus furiosus ; Stress, Physiological - genetics ; Studies ; temperature ; transposons ; Yeast ; Zymomonas - genetics ; Zymomonas - growth & development ; Zymomonas - metabolism ; Zymomonas mobilis</subject><ispartof>Journal of industrial microbiology & biotechnology, 2013-08, Vol.40 (8), p.811-822</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</citedby><cites>FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1400604383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1400604383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27595346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23702574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Xianghui</creatorcontrib><creatorcontrib>Wei, Na</creatorcontrib><creatorcontrib>Wang, Tianyv</creatorcontrib><creatorcontrib>Wang, Haoyong</creatorcontrib><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioenergy/Biofuels/Biochemicals</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Culture Media</subject><subject>Dehydrogenases</subject><subject>DNA Transposable Elements</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Genomes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heat</subject><subject>Heat shock proteins</subject><subject>heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins - genetics</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Malnutrition</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>nutrient requirements</subject><subject>Nutritional requirements</subject><subject>Operon</subject><subject>Plasmids</subject><subject>Pyrococcus furiosus</subject><subject>Stress, Physiological - genetics</subject><subject>Studies</subject><subject>temperature</subject><subject>transposons</subject><subject>Yeast</subject><subject>Zymomonas - genetics</subject><subject>Zymomonas - growth & development</subject><subject>Zymomonas - metabolism</subject><subject>Zymomonas mobilis</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kctu1TAQhiMEohd4ADZgCSGxCfgaJ0tUlYJUiQU9m24sJxmfukrs4nGEziPw1jjK4SIWrMbSfP8_4_mr6gWj7xil-j0yyjtVUyZqxltds0fVKZO6qZUS6nF5i0bXSgp1Up0h3lNKldb8aXXChaZcaXla_dghkOiIDeTytr4Jqu4twkiSDWOcybxku4cA6JHgATPMJEcyJLAZiCW3hznOMVgkc-z9VKDvPt8R9PvgnR9syAWfoJgNsArvio5gToBYJo5ktlNYcvLZx_CseuLshPD8WM-r3cfLm4tP9fWXq88XH67rQYku10MrLYyMAZNKs1HylnespWPTgeul7nqgIBW01upeOmcbcAqAMj32YmBdJ86rt5vvQ4rfFsBsZo8DTJMNEBc0TLJONOU8oqCv_0Hv45JC2a5QlDZUinal2EYNKSImcOYh-dmmg2HUrDmZLSdTcjJrToYVzcuj89LPMP5W_AqmAG-OgMXBTm49occ_nFadErIpHN84LK2wh_TXiv-Z_moTORuN3adivPvK6fonqriiSvwEKO60-Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Jia, Xianghui</creator><creator>Wei, Na</creator><creator>Wang, Tianyv</creator><creator>Wang, Haoyong</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130801</creationdate><title>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</title><author>Jia, Xianghui ; Wei, Na ; Wang, Tianyv ; Wang, Haoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioenergy/Biofuels/Biochemicals</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Culture Media</topic><topic>Dehydrogenases</topic><topic>DNA Transposable Elements</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Genomes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heat</topic><topic>Heat shock proteins</topic><topic>heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins - genetics</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Malnutrition</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>nutrient requirements</topic><topic>Nutritional requirements</topic><topic>Operon</topic><topic>Plasmids</topic><topic>Pyrococcus furiosus</topic><topic>Stress, Physiological - genetics</topic><topic>Studies</topic><topic>temperature</topic><topic>transposons</topic><topic>Yeast</topic><topic>Zymomonas - genetics</topic><topic>Zymomonas - growth & development</topic><topic>Zymomonas - metabolism</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xianghui</creatorcontrib><creatorcontrib>Wei, Na</creatorcontrib><creatorcontrib>Wang, Tianyv</creatorcontrib><creatorcontrib>Wang, Haoyong</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xianghui</au><au>Wei, Na</au><au>Wang, Tianyv</au><au>Wang, Haoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>40</volume><issue>8</issue><spage>811</spage><epage>822</epage><pages>811-822</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box–Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23702574</pmid><doi>10.1007/s10295-013-1287-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2013-08, Vol.40 (8), p.811-822 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1419360253 |
source | Open Access: Oxford University Press Open Journals; ABI/INFORM Global |
subjects | Amino acids Analysis Bacteria Biochemistry Bioenergy/Biofuels/Biochemicals Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biotechnology Culture Media Dehydrogenases DNA Transposable Elements E coli Escherichia coli Escherichia coli - genetics Ethanol Ethanol - metabolism ethanol production Fermentation Fundamental and applied biological sciences. Psychology Genes Genetic Engineering Genomes Glucose Glucose - metabolism Heat Heat shock proteins heat stress Heat tolerance Heat-Shock Proteins - genetics High temperature Hot Temperature Inorganic Chemistry Life Sciences Malnutrition Microbiology Mutagenesis nutrient requirements Nutritional requirements Operon Plasmids Pyrococcus furiosus Stress, Physiological - genetics Studies temperature transposons Yeast Zymomonas - genetics Zymomonas - growth & development Zymomonas - metabolism Zymomonas mobilis |
title | Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20an%20EZ-Tn5-based%20random%20mutagenesis%20system%20to%20create%20a%20Zymomonas%20mobilis%20with%20significant%20tolerance%20to%20heat%20stress%20and%20malnutrition&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Jia,%20Xianghui&rft.date=2013-08-01&rft.volume=40&rft.issue=8&rft.spage=811&rft.epage=822&rft.pages=811-822&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-013-1287-1&rft_dat=%3Cproquest_cross%3E1419360253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-c84aed11e14571d42829180d69efb479be0e45e8aa7b4ffa6ef5ee017db3c1993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1400604383&rft_id=info:pmid/23702574&rfr_iscdi=true |