Loading…

Neural progenitor cells derived from adult bone marrow mesenchymal stem cells promote neuronal regeneration

It is well known that neural stem/progenitor cells (NS/PC) are an ideal cell type for the treatment of central nervous system (CNS) disease. However, ethical problems have severely hampered fetal NS/PC from being widely used as a source for stem cell therapy. Recently, it has been demonstrated that...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) 2012-11, Vol.91 (19-20), p.951-958
Main Authors: Tang, Yue, Cui, Yong-Chun, Wang, Xiao-Juan, Wu, Ai-Li, Hu, Guang-Fu, Luo, Fu-Liang, Sun, Jia-Kang, Sun, Jing, Wu, Li-Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that neural stem/progenitor cells (NS/PC) are an ideal cell type for the treatment of central nervous system (CNS) disease. However, ethical problems have severely hampered fetal NS/PC from being widely used as a source for stem cell therapy. Recently, it has been demonstrated that autologous bone marrow mesenchymal stem cells (BMSC) can transdifferentiate into neural progenitor cells (NPC). The biological function of BMSC derived NPC (MDNPC) in neuronal systems remains unknown. In the present study, we aimed to investigate whether MDNPC can promote in vitro neural regeneration, a process comprising mainly the generation of neurons and neurotransmitters. We co-cultured BMSC, MDNPC or fetal NS/PC with PC12 cells and studied their roles on proliferation, neurite formation and dopamine release from PC12 cells. Furthermore, we also explored the mechanisms by which MDNPC regulate dopamine secretion from PC12 derived neural cells using Western blot. We found that both MDNPC and NS/PC had similar morphologies and there were no significant differences between MDNPC and NS/PC in promoting PC12 cell proliferation, neurite outgrowth, and dopamine release. We also demonstrated that NS/PC induced dopamine secretion was associated with an upregulation of dopamine transporter (DAT) levels. In summary, MDNPC were comparable to NS/PC in promoting neural regeneration, indicating that MDNPC are a promising candidate source of neural stem cells for the treatment of neurological diseases.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2012.09.005