Loading…

The molecular basis of self-avoidance

Self-avoidance, the tendency of neurites of the same cell to selectively avoid each other, is a property of both vertebrate and invertebrate neurons. In Drosophila, self-avoidance is mediated by a large family of cell recognition molecules of the immunoglobulin superfamily encoded, via alternative s...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of neuroscience 2013-07, Vol.36 (1), p.547-568
Main Authors: Zipursky, S Lawrence, Grueber, Wesley B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853
cites cdi_FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853
container_end_page 568
container_issue 1
container_start_page 547
container_title Annual review of neuroscience
container_volume 36
creator Zipursky, S Lawrence
Grueber, Wesley B
description Self-avoidance, the tendency of neurites of the same cell to selectively avoid each other, is a property of both vertebrate and invertebrate neurons. In Drosophila, self-avoidance is mediated by a large family of cell recognition molecules of the immunoglobulin superfamily encoded, via alternative splicing, by the Dscam1 locus. Dscam1 promotes self-avoidance in dendrites, axons, and prospective postsynaptic elements. Expression analysis suggests that each neuron expresses a unique combination of isoforms. Identical isoforms on sister neurites exhibit isoform-specific homophilic recognition and elicit repulsion between processes, thereby promoting self-avoidance. Although any isoform can promote self-avoidance, thousands are necessary to ensure that neurites readily discriminate between self and nonself. Recent studies indicate that a large family of cadherins in the mouse, i.e., the clustered protocadherins, functions in an analogous fashion to promote self-avoidance. These studies argue for the evolution of a common molecular strategy for self-avoidance.
doi_str_mv 10.1146/annurev-neuro-062111-150414
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419372745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399924453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRbK3-BQkUwc3ovfNKBldSfEHBTQV3w2QywZQ86kxT8N8bTXXhytXdfOcc7kfIHOEKUahr27Z98Dva-j50FBRDRIoSBIoDMkUpJBXI1CGZAoqUAqjXCTmJcQ0AmnN9TCaMZwIzwabkYvXmk6arvetrG5LcxiomXZlEX5fU7rqqsK3zp-SotHX0Z_s7Iy_3d6vFI10-PzwtbpfUCZFtaV4wlqMtXO5QSgBUTEgmS-DWg-CZU7lS2nPmi1w7n4JTDDBHXUImXSb5jFyOvZvQvfc-bk1TRefr2ra-66NBgZqnLBX_QLnWmomBHND5H3Td9aEdHhkKQaRS6iwbqJuRcqGLMfjSbELV2PBhEMyXeLMXb77Fm1G8GcUP6fP9Rp83vvjN_pjmn2OWgCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1404755988</pqid></control><display><type>article</type><title>The molecular basis of self-avoidance</title><source>Electronic Back Volume Collection (EBVC)</source><creator>Zipursky, S Lawrence ; Grueber, Wesley B</creator><creatorcontrib>Zipursky, S Lawrence ; Grueber, Wesley B</creatorcontrib><description>Self-avoidance, the tendency of neurites of the same cell to selectively avoid each other, is a property of both vertebrate and invertebrate neurons. In Drosophila, self-avoidance is mediated by a large family of cell recognition molecules of the immunoglobulin superfamily encoded, via alternative splicing, by the Dscam1 locus. Dscam1 promotes self-avoidance in dendrites, axons, and prospective postsynaptic elements. Expression analysis suggests that each neuron expresses a unique combination of isoforms. Identical isoforms on sister neurites exhibit isoform-specific homophilic recognition and elicit repulsion between processes, thereby promoting self-avoidance. Although any isoform can promote self-avoidance, thousands are necessary to ensure that neurites readily discriminate between self and nonself. Recent studies indicate that a large family of cadherins in the mouse, i.e., the clustered protocadherins, functions in an analogous fashion to promote self-avoidance. These studies argue for the evolution of a common molecular strategy for self-avoidance.</description><identifier>ISSN: 0147-006X</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-062111-150414</identifier><identifier>PMID: 23841842</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Alternative splicing ; Animals ; Biological Evolution ; Cadherins - genetics ; Cadherins - metabolism ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cell Communication - physiology ; Dendrites - physiology ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Gene expression ; Immunoglobulins ; Immunoglobulins - genetics ; Immunoglobulins - physiology ; Insects ; Molecular biology ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurosciences</subject><ispartof>Annual review of neuroscience, 2013-07, Vol.36 (1), p.547-568</ispartof><rights>Copyright Annual Reviews, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853</citedby><cites>FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23841842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zipursky, S Lawrence</creatorcontrib><creatorcontrib>Grueber, Wesley B</creatorcontrib><title>The molecular basis of self-avoidance</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>Self-avoidance, the tendency of neurites of the same cell to selectively avoid each other, is a property of both vertebrate and invertebrate neurons. In Drosophila, self-avoidance is mediated by a large family of cell recognition molecules of the immunoglobulin superfamily encoded, via alternative splicing, by the Dscam1 locus. Dscam1 promotes self-avoidance in dendrites, axons, and prospective postsynaptic elements. Expression analysis suggests that each neuron expresses a unique combination of isoforms. Identical isoforms on sister neurites exhibit isoform-specific homophilic recognition and elicit repulsion between processes, thereby promoting self-avoidance. Although any isoform can promote self-avoidance, thousands are necessary to ensure that neurites readily discriminate between self and nonself. Recent studies indicate that a large family of cadherins in the mouse, i.e., the clustered protocadherins, functions in an analogous fashion to promote self-avoidance. These studies argue for the evolution of a common molecular strategy for self-avoidance.</description><subject>Alternative splicing</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Communication - physiology</subject><subject>Dendrites - physiology</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Gene expression</subject><subject>Immunoglobulins</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - physiology</subject><subject>Insects</subject><subject>Molecular biology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><issn>0147-006X</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRbK3-BQkUwc3ovfNKBldSfEHBTQV3w2QywZQ86kxT8N8bTXXhytXdfOcc7kfIHOEKUahr27Z98Dva-j50FBRDRIoSBIoDMkUpJBXI1CGZAoqUAqjXCTmJcQ0AmnN9TCaMZwIzwabkYvXmk6arvetrG5LcxiomXZlEX5fU7rqqsK3zp-SotHX0Z_s7Iy_3d6vFI10-PzwtbpfUCZFtaV4wlqMtXO5QSgBUTEgmS-DWg-CZU7lS2nPmi1w7n4JTDDBHXUImXSb5jFyOvZvQvfc-bk1TRefr2ra-66NBgZqnLBX_QLnWmomBHND5H3Td9aEdHhkKQaRS6iwbqJuRcqGLMfjSbELV2PBhEMyXeLMXb77Fm1G8GcUP6fP9Rp83vvjN_pjmn2OWgCU</recordid><startdate>20130708</startdate><enddate>20130708</enddate><creator>Zipursky, S Lawrence</creator><creator>Grueber, Wesley B</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20130708</creationdate><title>The molecular basis of self-avoidance</title><author>Zipursky, S Lawrence ; Grueber, Wesley B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative splicing</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Communication - physiology</topic><topic>Dendrites - physiology</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Gene expression</topic><topic>Immunoglobulins</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - physiology</topic><topic>Insects</topic><topic>Molecular biology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zipursky, S Lawrence</creatorcontrib><creatorcontrib>Grueber, Wesley B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zipursky, S Lawrence</au><au>Grueber, Wesley B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular basis of self-avoidance</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2013-07-08</date><risdate>2013</risdate><volume>36</volume><issue>1</issue><spage>547</spage><epage>568</epage><pages>547-568</pages><issn>0147-006X</issn><eissn>1545-4126</eissn><abstract>Self-avoidance, the tendency of neurites of the same cell to selectively avoid each other, is a property of both vertebrate and invertebrate neurons. In Drosophila, self-avoidance is mediated by a large family of cell recognition molecules of the immunoglobulin superfamily encoded, via alternative splicing, by the Dscam1 locus. Dscam1 promotes self-avoidance in dendrites, axons, and prospective postsynaptic elements. Expression analysis suggests that each neuron expresses a unique combination of isoforms. Identical isoforms on sister neurites exhibit isoform-specific homophilic recognition and elicit repulsion between processes, thereby promoting self-avoidance. Although any isoform can promote self-avoidance, thousands are necessary to ensure that neurites readily discriminate between self and nonself. Recent studies indicate that a large family of cadherins in the mouse, i.e., the clustered protocadherins, functions in an analogous fashion to promote self-avoidance. These studies argue for the evolution of a common molecular strategy for self-avoidance.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>23841842</pmid><doi>10.1146/annurev-neuro-062111-150414</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0147-006X
ispartof Annual review of neuroscience, 2013-07, Vol.36 (1), p.547-568
issn 0147-006X
1545-4126
language eng
recordid cdi_proquest_miscellaneous_1419372745
source Electronic Back Volume Collection (EBVC)
subjects Alternative splicing
Animals
Biological Evolution
Cadherins - genetics
Cadherins - metabolism
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cell Communication - physiology
Dendrites - physiology
Drosophila
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Gene expression
Immunoglobulins
Immunoglobulins - genetics
Immunoglobulins - physiology
Insects
Molecular biology
Neurons
Neurons - cytology
Neurons - physiology
Neurosciences
title The molecular basis of self-avoidance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20basis%20of%20self-avoidance&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Zipursky,%20S%20Lawrence&rft.date=2013-07-08&rft.volume=36&rft.issue=1&rft.spage=547&rft.epage=568&rft.pages=547-568&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-062111-150414&rft_dat=%3Cproquest_cross%3E1399924453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-bd22b1adcbc155001624525f03ae0438c6b669e32edb9ce70c6201b19f085c853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1404755988&rft_id=info:pmid/23841842&rfr_iscdi=true