Loading…
Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis:Role of RhoA/Rho kinase pathway
Abstract Introduction Excessive vascular permeability is a characteristic feature of ALI. We have previously demonstrated that UFH prevents LPS-induced disruption of endothelial barrier function in vitro. It was the objective of this study to determine whether UFH may attenuate endotoxin-induced lun...
Saved in:
Published in: | Thrombosis research 2013-07, Vol.132 (1), p.e42-e47 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Introduction Excessive vascular permeability is a characteristic feature of ALI. We have previously demonstrated that UFH prevents LPS-induced disruption of endothelial barrier function in vitro. It was the objective of this study to determine whether UFH may attenuate endotoxin-induced lung vascular leak in mice and to further explore the possible underlying mechanisms. Methods C57BL/6J mice were randomly divided into the control, LPS and LPS plus UFH groups. Sepsis was induced by intraperitoneal injection of LPS at a dose of 30 mg/kg. Mice in the LPS plus UFH group were intravenously received 8 units UFH (heparin sodium) diluted in 20 μl sterile saline at 0.5 h before the injection of LPS. Results 1) UFH pretreatment attenuated LPS-induced histopathological changes in Lung at 6 h; 2) Pretreatment of mice with UFH ameliorated LPS-induced lung edema and lung vascular leak at 6 h; 3) UFH pretreatment dramatically inhibited RhoA and ROCK activation in the lung tissues of LPS-treated mice (3 and 6 h). 4) UFH pretreatment significantly down-regulated ROCK1 gene expression, but did not affect the increased expression of ROCK2 mRNA in the lung tissues of LPS-treated mice at 3 or 6 h. Conclusion These data suggest that UFH may attenuate endotoxin-induced lung vascular leak by regulating RhoA/Rho kinase pathway. |
---|---|
ISSN: | 0049-3848 1879-2472 |
DOI: | 10.1016/j.thromres.2013.03.010 |