Loading…

Multiwavelength narrow linewidth erbium-doped fiber laser based on FP-LDs

In this paper, we propose and demonstrate a technique to realize multiwavelength operation in erbium-doped fiber lasers (EDFLs) by inserting two Fabry Pérot laser diodes (FP-LDs) in the laser cavity respectively in cascaded and parallel way. The FP-LDs not only act as wavelength selection elements,...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2013-07, Vol.21 (14), p.16928-16933
Main Authors: Zhang, Aiqin, Jin, Yanbing, Feng, Xinhuan, Zhou, Jingjuan, Li, Zhaohui, Guan, Bai-Ou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose and demonstrate a technique to realize multiwavelength operation in erbium-doped fiber lasers (EDFLs) by inserting two Fabry Pérot laser diodes (FP-LDs) in the laser cavity respectively in cascaded and parallel way. The FP-LDs not only act as wavelength selection elements, but also offer optical gain or loss for the operation wavelengths in the laser cavity. The gains or losses for the oscillation wavelengths obtained from FP-LDs differ with adjustment of the driving current of the FP-LDs. Thus, the utilization of the FP-LDs in the laser cavity can introduce wavelength dependent gain or loss which can effectively suppress the competition caused by the homogeneous gain broadening of the erbium-doped fiber (EDF). As a result, 16-wavelength and 20-wavelength operation with a wavelength-spacing of 1.25 nm has been achieved respectively in the cascaded and parallel FP-LDs based EDFL schemes. The measured power fluctuation of each wavelength is smaller than 0.4dB for both EDFLs. Furthermore, the injection locking of the FP-LDs ensures a narrow linewidth of the EDFL output and the linewidth is estimated to be narrower than 100 MHz for the cascaded scheme based EDFL.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.21.016928