Loading…
Optimizing the structure and contractility of engineered skeletal muscle thin films
An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used...
Saved in:
Published in: | Acta biomaterialia 2013-08, Vol.9 (8), p.7885-7894 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03 |
container_end_page | 7894 |
container_issue | 8 |
container_start_page | 7885 |
container_title | Acta biomaterialia |
container_volume | 9 |
creator | Sun, Y. Duffy, R. Lee, A. Feinberg, A.W. |
description | An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility. |
doi_str_mv | 10.1016/j.actbio.2013.04.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427002336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113002171</els_id><sourcerecordid>1427002336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</originalsourceid><addsrcrecordid>eNp9kEtv1TAQRi0Eou1t_wGCLNkkjO34kQ0SqoAiVeqidG05zvjiSx4X20Fqfz0uKSy7mlmcbx6HkDcUGgpUfjg01uU-LA0DyhtoG-DyBTmlWulaCalfll61rFYg6Qk5S-kAwDVl-jU5YVxyxhU7Jbc3xxym8BDmfZV_YJVyXF1eI1Z2Hiq3zDmWNWEM-b5afIXzPsyIEYcq_cQRsx2raU1uxJIOc-XDOKVz8srbMeHFU92Ruy-fv19e1dc3X79dfrquXStYrjsrnPJCWDH4nqNA4XvoUXsptfKDshItZRZaxujQloNl-bTruYYOqOiB78j7be4xLr9WTNlMITkcRzvjsiZDW6YAGC_P7ki7oS4uKUX05hjDZOO9oWAedZqD2XSaR50GWgN_Y2-fNqz9hMP_0D9_BXi3Ad4uxu5jSObutkwQABR016lCfNwILCZ-B4wmuYCzwyFEdNkMS3j-hj9jl5HM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427002336</pqid></control><display><type>article</type><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><source>Elsevier</source><creator>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</creator><creatorcontrib>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</creatorcontrib><description>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.04.036</identifier><identifier>PMID: 23632372</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bioartificial Organs ; Cell Differentiation ; Cell Line ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Equipment Failure Analysis ; extracellular matrix ; Fibronectin ; fibronectins ; Fibronectins - chemistry ; image analysis ; Materials Testing ; mechanics ; Membranes, Artificial ; Mice ; Microcontact printing ; muscle development ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; myoblasts ; Myoblasts - cytology ; Myoblasts - physiology ; Polydimethylsiloxane ; protein composition ; Skeletal muscle ; spatial distribution ; structure-activity relationships ; Surface Properties ; tetanus ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2013-08, Vol.9 (8), p.7885-7894</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</citedby><cites>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23632372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duffy, R.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Feinberg, A.W.</creatorcontrib><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</description><subject>Animals</subject><subject>Bioartificial Organs</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>extracellular matrix</subject><subject>Fibronectin</subject><subject>fibronectins</subject><subject>Fibronectins - chemistry</subject><subject>image analysis</subject><subject>Materials Testing</subject><subject>mechanics</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Microcontact printing</subject><subject>muscle development</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - physiology</subject><subject>Polydimethylsiloxane</subject><subject>protein composition</subject><subject>Skeletal muscle</subject><subject>spatial distribution</subject><subject>structure-activity relationships</subject><subject>Surface Properties</subject><subject>tetanus</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1TAQRi0Eou1t_wGCLNkkjO34kQ0SqoAiVeqidG05zvjiSx4X20Fqfz0uKSy7mlmcbx6HkDcUGgpUfjg01uU-LA0DyhtoG-DyBTmlWulaCalfll61rFYg6Qk5S-kAwDVl-jU5YVxyxhU7Jbc3xxym8BDmfZV_YJVyXF1eI1Z2Hiq3zDmWNWEM-b5afIXzPsyIEYcq_cQRsx2raU1uxJIOc-XDOKVz8srbMeHFU92Ruy-fv19e1dc3X79dfrquXStYrjsrnPJCWDH4nqNA4XvoUXsptfKDshItZRZaxujQloNl-bTruYYOqOiB78j7be4xLr9WTNlMITkcRzvjsiZDW6YAGC_P7ki7oS4uKUX05hjDZOO9oWAedZqD2XSaR50GWgN_Y2-fNqz9hMP_0D9_BXi3Ad4uxu5jSObutkwQABR016lCfNwILCZ-B4wmuYCzwyFEdNkMS3j-hj9jl5HM</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Sun, Y.</creator><creator>Duffy, R.</creator><creator>Lee, A.</creator><creator>Feinberg, A.W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><author>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bioartificial Organs</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>extracellular matrix</topic><topic>Fibronectin</topic><topic>fibronectins</topic><topic>Fibronectins - chemistry</topic><topic>image analysis</topic><topic>Materials Testing</topic><topic>mechanics</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Microcontact printing</topic><topic>muscle development</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - physiology</topic><topic>Polydimethylsiloxane</topic><topic>protein composition</topic><topic>Skeletal muscle</topic><topic>spatial distribution</topic><topic>structure-activity relationships</topic><topic>Surface Properties</topic><topic>tetanus</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duffy, R.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Feinberg, A.W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Y.</au><au>Duffy, R.</au><au>Lee, A.</au><au>Feinberg, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the structure and contractility of engineered skeletal muscle thin films</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>9</volume><issue>8</issue><spage>7885</spage><epage>7894</epage><pages>7885-7894</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23632372</pmid><doi>10.1016/j.actbio.2013.04.036</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2013-08, Vol.9 (8), p.7885-7894 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1427002336 |
source | Elsevier |
subjects | Animals Bioartificial Organs Cell Differentiation Cell Line Dimethylpolysiloxanes - chemistry Equipment Design Equipment Failure Analysis extracellular matrix Fibronectin fibronectins Fibronectins - chemistry image analysis Materials Testing mechanics Membranes, Artificial Mice Microcontact printing muscle development Muscle, Skeletal - cytology Muscle, Skeletal - physiology myoblasts Myoblasts - cytology Myoblasts - physiology Polydimethylsiloxane protein composition Skeletal muscle spatial distribution structure-activity relationships Surface Properties tetanus Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds |
title | Optimizing the structure and contractility of engineered skeletal muscle thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20structure%20and%20contractility%20of%20engineered%20skeletal%20muscle%20thin%20films&rft.jtitle=Acta%20biomaterialia&rft.au=Sun,%20Y.&rft.date=2013-08-01&rft.volume=9&rft.issue=8&rft.spage=7885&rft.epage=7894&rft.pages=7885-7894&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.04.036&rft_dat=%3Cproquest_cross%3E1427002336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1427002336&rft_id=info:pmid/23632372&rfr_iscdi=true |