Loading…

Optimizing the structure and contractility of engineered skeletal muscle thin films

An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2013-08, Vol.9 (8), p.7885-7894
Main Authors: Sun, Y., Duffy, R., Lee, A., Feinberg, A.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03
cites cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03
container_end_page 7894
container_issue 8
container_start_page 7885
container_title Acta biomaterialia
container_volume 9
creator Sun, Y.
Duffy, R.
Lee, A.
Feinberg, A.W.
description An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.
doi_str_mv 10.1016/j.actbio.2013.04.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427002336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113002171</els_id><sourcerecordid>1427002336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</originalsourceid><addsrcrecordid>eNp9kEtv1TAQRi0Eou1t_wGCLNkkjO34kQ0SqoAiVeqidG05zvjiSx4X20Fqfz0uKSy7mlmcbx6HkDcUGgpUfjg01uU-LA0DyhtoG-DyBTmlWulaCalfll61rFYg6Qk5S-kAwDVl-jU5YVxyxhU7Jbc3xxym8BDmfZV_YJVyXF1eI1Z2Hiq3zDmWNWEM-b5afIXzPsyIEYcq_cQRsx2raU1uxJIOc-XDOKVz8srbMeHFU92Ruy-fv19e1dc3X79dfrquXStYrjsrnPJCWDH4nqNA4XvoUXsptfKDshItZRZaxujQloNl-bTruYYOqOiB78j7be4xLr9WTNlMITkcRzvjsiZDW6YAGC_P7ki7oS4uKUX05hjDZOO9oWAedZqD2XSaR50GWgN_Y2-fNqz9hMP_0D9_BXi3Ad4uxu5jSObutkwQABR016lCfNwILCZ-B4wmuYCzwyFEdNkMS3j-hj9jl5HM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427002336</pqid></control><display><type>article</type><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><source>Elsevier</source><creator>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</creator><creatorcontrib>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</creatorcontrib><description>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.04.036</identifier><identifier>PMID: 23632372</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bioartificial Organs ; Cell Differentiation ; Cell Line ; Dimethylpolysiloxanes - chemistry ; Equipment Design ; Equipment Failure Analysis ; extracellular matrix ; Fibronectin ; fibronectins ; Fibronectins - chemistry ; image analysis ; Materials Testing ; mechanics ; Membranes, Artificial ; Mice ; Microcontact printing ; muscle development ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; myoblasts ; Myoblasts - cytology ; Myoblasts - physiology ; Polydimethylsiloxane ; protein composition ; Skeletal muscle ; spatial distribution ; structure-activity relationships ; Surface Properties ; tetanus ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2013-08, Vol.9 (8), p.7885-7894</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</citedby><cites>FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23632372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duffy, R.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Feinberg, A.W.</creatorcontrib><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</description><subject>Animals</subject><subject>Bioartificial Organs</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>extracellular matrix</subject><subject>Fibronectin</subject><subject>fibronectins</subject><subject>Fibronectins - chemistry</subject><subject>image analysis</subject><subject>Materials Testing</subject><subject>mechanics</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Microcontact printing</subject><subject>muscle development</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - physiology</subject><subject>Polydimethylsiloxane</subject><subject>protein composition</subject><subject>Skeletal muscle</subject><subject>spatial distribution</subject><subject>structure-activity relationships</subject><subject>Surface Properties</subject><subject>tetanus</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1TAQRi0Eou1t_wGCLNkkjO34kQ0SqoAiVeqidG05zvjiSx4X20Fqfz0uKSy7mlmcbx6HkDcUGgpUfjg01uU-LA0DyhtoG-DyBTmlWulaCalfll61rFYg6Qk5S-kAwDVl-jU5YVxyxhU7Jbc3xxym8BDmfZV_YJVyXF1eI1Z2Hiq3zDmWNWEM-b5afIXzPsyIEYcq_cQRsx2raU1uxJIOc-XDOKVz8srbMeHFU92Ruy-fv19e1dc3X79dfrquXStYrjsrnPJCWDH4nqNA4XvoUXsptfKDshItZRZaxujQloNl-bTruYYOqOiB78j7be4xLr9WTNlMITkcRzvjsiZDW6YAGC_P7ki7oS4uKUX05hjDZOO9oWAedZqD2XSaR50GWgN_Y2-fNqz9hMP_0D9_BXi3Ad4uxu5jSObutkwQABR016lCfNwILCZ-B4wmuYCzwyFEdNkMS3j-hj9jl5HM</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Sun, Y.</creator><creator>Duffy, R.</creator><creator>Lee, A.</creator><creator>Feinberg, A.W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Optimizing the structure and contractility of engineered skeletal muscle thin films</title><author>Sun, Y. ; Duffy, R. ; Lee, A. ; Feinberg, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bioartificial Organs</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>extracellular matrix</topic><topic>Fibronectin</topic><topic>fibronectins</topic><topic>Fibronectins - chemistry</topic><topic>image analysis</topic><topic>Materials Testing</topic><topic>mechanics</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Microcontact printing</topic><topic>muscle development</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - physiology</topic><topic>Polydimethylsiloxane</topic><topic>protein composition</topic><topic>Skeletal muscle</topic><topic>spatial distribution</topic><topic>structure-activity relationships</topic><topic>Surface Properties</topic><topic>tetanus</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Duffy, R.</creatorcontrib><creatorcontrib>Lee, A.</creatorcontrib><creatorcontrib>Feinberg, A.W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Y.</au><au>Duffy, R.</au><au>Lee, A.</au><au>Feinberg, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the structure and contractility of engineered skeletal muscle thin films</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>9</volume><issue>8</issue><spage>7885</spage><epage>7894</epage><pages>7885-7894</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>An experimental system was developed to tissue engineer skeletal muscle thin films with well-defined tissue architecture and to quantify the effect on contractility. Using the C2C12 cell line, the authors tested whether tailoring the width and spacing of micropatterned fibronectin lines can be used to increase myoblast differentiation into functional myotubes and maximize uniaxial alignment within a 2-D sheet. Using a combination of image analysis and the muscular thin film contractility assay, it was demonstrated that a fibronectin line width of 100μm and line spacing of 20μm is able to maximize the formation of anisotropic, engineered skeletal muscle with consistent contractile properties at the millimeter length scale. The engineered skeletal muscle exhibited a positive force–frequency relationship, could achieve tetanus and produced a normalized peak twitch stress of 9.4±4.6kPa at 1Hz stimulation. These results establish that micropatterning technologies can be used to control skeletal muscle differentiation and tissue architecture and, in combination with the muscular thin film contractility, assay can be used to probe structure–function relationships. More broadly, an experimental platform is provided with the potential to examine how a range of microenvironmental cues such as extracellular matrix protein composition, micropattern geometries and substrate mechanics affect skeletal muscle myogenesis and contractility.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23632372</pmid><doi>10.1016/j.actbio.2013.04.036</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2013-08, Vol.9 (8), p.7885-7894
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1427002336
source Elsevier
subjects Animals
Bioartificial Organs
Cell Differentiation
Cell Line
Dimethylpolysiloxanes - chemistry
Equipment Design
Equipment Failure Analysis
extracellular matrix
Fibronectin
fibronectins
Fibronectins - chemistry
image analysis
Materials Testing
mechanics
Membranes, Artificial
Mice
Microcontact printing
muscle development
Muscle, Skeletal - cytology
Muscle, Skeletal - physiology
myoblasts
Myoblasts - cytology
Myoblasts - physiology
Polydimethylsiloxane
protein composition
Skeletal muscle
spatial distribution
structure-activity relationships
Surface Properties
tetanus
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
title Optimizing the structure and contractility of engineered skeletal muscle thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20structure%20and%20contractility%20of%20engineered%20skeletal%20muscle%20thin%20films&rft.jtitle=Acta%20biomaterialia&rft.au=Sun,%20Y.&rft.date=2013-08-01&rft.volume=9&rft.issue=8&rft.spage=7885&rft.epage=7894&rft.pages=7885-7894&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.04.036&rft_dat=%3Cproquest_cross%3E1427002336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-9a5c7f55a5dfb3e5e5fb0be8f6687fd7a6ea12a04221d463262019b3809015b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1427002336&rft_id=info:pmid/23632372&rfr_iscdi=true