Loading…

Functional Analysis of the Promoter of a Glycosyl Hydrolase Gene Induced in Resistant Sinapis alba by Alternaria brassicicola

A putative family 3 glycosyl hydrolase (GH) gene showed significant differential expression in resistant Sinapis alba, compared with the susceptible Brassica juncea, as part of the initial responses during interaction with the necrotroph Alternaria brassicicola. To understand the mechanism of induct...

Full description

Saved in:
Bibliographic Details
Published in:Phytopathology 2013-08, Vol.103 (8), p.841-850
Main Authors: CHATTERJEE, Madhuvanti, MAZUMDER, Mrinmoy, BASU, Debabrata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A putative family 3 glycosyl hydrolase (GH) gene showed significant differential expression in resistant Sinapis alba, compared with the susceptible Brassica juncea, as part of the initial responses during interaction with the necrotroph Alternaria brassicicola. To understand the mechanism of induction, the promoter was isolated and deletion analysis carried out. All the promoter fragments were fused with the β-glucuronidase gene and the expressions were studied in stable B. juncea transgenics and transiently transformed Nicotiana tabacum. Analysis of the expression of the promoter showed the presence of functional abscisic acid (ABA)-, jasmonic acid (JA)-, and salicylic acid (SA)-responsive cis elements. Interestingly, the promoter was found to be induced in both S. alba and B. juncea upon challenge with A. brassicicola but, in S. alba, SA had an inhibitory effect on the pathogen-induced expression of the gene whereas, in B. juncea, SA did not have any negative effect. Therefore, the SA-mediated inhibition in S. alba indicates that the induction is probably through JA or ABA signaling. The difference in the mechanism of induction of the same promoter in the resistant and susceptible plants is probably due to the differential hormonal responses initiated upon challenge with A. brassicicola.
ISSN:0031-949X
1943-7684
DOI:10.1094/PHYTO-11-12-0303-R