Loading…
Study of strategies for selecting quantitative trait locus mapping procedures by computer simulation
Along with the development and integration of molecular genetics and quantitative genetics, many quantitative trait locus (QTL) mapping studies have been conducted using different mapping populations in various crop species. Existing QTLs can be used for marker-assisted breeding and map-based clonin...
Saved in:
Published in: | Molecular breeding 2013-04, Vol.31 (4), p.947-956 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Along with the development and integration of molecular genetics and quantitative genetics, many quantitative trait locus (QTL) mapping studies have been conducted using different mapping populations in various crop species. Existing QTLs can be used for marker-assisted breeding and map-based cloning, whereas the false-positive QTLs are no use. The purpose of this study is to evaluate the suitability of different mapping procedures for data from different genetic models. In this study, four types of recombinant inbred lines (RILs) with different genetic models, viz. additive QTLs (Model I), additive and epistatic QTLs (Model II), additive QTLs and QTL × environment interaction (Model III), additive, epistatic QTLs and QTL × environment interaction (Model IV), were simulated by computer. Six types of QTL mapping procedures, viz. CIM, MIMF, MIMR, ICIM, MQM and NWIM, on four kinds of QTL mapping software, viz. WinQTL Cartographer Version 2.5, IciMapping Version 2.0, MapQTL Version 5.0 and QTLnetwork Version 2.0, were used for screening QTLs of the simulated RILs. The results showed that different mapping procedures have different suitability for different genetic models. CIM and MQM can only screen Model I data. MIMR, MIMF and ICIM can only screen Model I and Model II data. NWIM can screen all four models’ data. It can be concluded that different genetic models’ data have different most suitable mapping procedures. In practical experiments where the genetic model of the data is unknown, a multiple model mapping strategy should be used, that is a full model scanning with complex model procedure followed by verification with other procedures corresponding to the scanning results. |
---|---|
ISSN: | 1380-3743 1572-9788 |
DOI: | 10.1007/s11032-013-9848-6 |