Loading…

Comparison of the Neural Differentiation Potential of Human Mesenchymal Stem Cells from Amniotic Fluid and Adult Bone Marrow

Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiat...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 2013-05, Vol.33 (4), p.465-475
Main Authors: Yan, Zhong-Jie, Hu, Yu-Qin, Zhang, Hong-Tian, Zhang, Peng, Xiao, Zong-Yu, Sun, Xin-Lin, Cai, Ying-Qian, Hu, Chang-Chen, Xu, Ru-Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.
ISSN:0272-4340
1573-6830
1573-6830
DOI:10.1007/s10571-013-9922-y