Loading…
Reactive oxygen species and anti-oxidant defenses in tail of tadpoles, Xenopus laevis
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and cata...
Saved in:
Published in: | Comparative biochemistry and physiology. Toxicology & pharmacology 2013-08, Vol.158 (2), p.101-108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue. |
---|---|
ISSN: | 1532-0456 1878-1659 |
DOI: | 10.1016/j.cbpc.2013.05.003 |