Loading…
Monocyte Chemoattractant Protein-1―Deficiency Results in Altered Blood―Brain Barrier Breakdown After Experimental Stroke
Stroke-induced blood-brain barrier (BBB)-disruption can contribute to further progression of cerebral damage. There is rising evidence for a strong involvement of chemokines in postischemic BBB-breakdown. In a previous study, we showed that monocyte chemoattractant protein-1 (MCP-1)-deficiency resul...
Saved in:
Published in: | Stroke (1970) 2013-09, Vol.44 (9), p.2536-2544 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stroke-induced blood-brain barrier (BBB)-disruption can contribute to further progression of cerebral damage. There is rising evidence for a strong involvement of chemokines in postischemic BBB-breakdown. In a previous study, we showed that monocyte chemoattractant protein-1 (MCP-1)-deficiency results in a markedly reduced inflammatory reaction with decreased levels of interleukin-6, interleukin-1β, and granulocyte colony-stimulating factor after experimental stroke. With MCP-1 as one of the key players in stroke-induced inflammation, in this study, we investigated the influence of MCP-1 on poststroke BBB-disruption as well as transcription/translation of BBB-related genes/proteins after cerebral ischemia.
Sixteen wild-type and 16 MCP-1(-/-) mice were subjected to 30 minutes of middle cerebral artery occlusion. By injecting high molecular-tracer, we compared the degree of BBB-disruption after middle cerebral artery occlusion. Real-time polymerase chain reactions and Western blot technique were used to compare tight-junction gene expression, protein secretion, and BBB-leakage.
Here, we report that MCP-1-deficiency results in a reduced BBB-leakage and a diminished expression of BBB-related genes occludin, zonula occludens-1, and zonula occludens-2. Real-time polymerase chain reactions and Western blot analysis revealed elevated claudin-5-levels in MCP-1(-/-) animals. MCP-1-deficiency resulted in reduced infarct sizes and an increased vascular accumulation of fluorescein-isothiocyanate-albumin.
The results of the study provide further insights into the molecular mechanisms of BBB-opening and may help to better understand the mechanisms of infarct development after cerebral ischemia. |
---|---|
ISSN: | 0039-2499 1524-4628 |
DOI: | 10.1161/strokeaha.111.000528 |