Loading…

On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping

In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implemen...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-05, Vol.138 (18), p.184112-184112
Main Authors: Curchod, Basile F E, Tavernelli, Ivano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43
cites cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43
container_end_page 184112
container_issue 18
container_start_page 184112
container_title The Journal of chemical physics
container_volume 138
creator Curchod, Basile F E
Tavernelli, Ivano
description In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.
doi_str_mv 10.1063/1.4803835
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429856387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429856387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</originalsourceid><addsrcrecordid>eNqFkM1Kw0AYRQdRbK0ufAHJUhep3zf_cafiHxTcuJUwM5mxKU1SZxKhb2-ltbhzdeFy7l0cQs4RpgiSXeOUa2CaiQMyRtBFrmQBh2QMQDEvJMgROUlpAQCoKD8mI8qkksD4mLy_tlkfzcK7vovr3Jrkq6ztWlPVxpq-dlm1bk1Tu3ST3XXzpjbtvsm-fExD-rPP0hCDcT6bd6tV3X6ckqNglsmf7XJC3h4f3u6f89nr08v97Sx3TPM-t1poxEopqS2XXIbCUgxWBAcFBhWYpR6to44KDqoQQkuFBl1ggnrH2YRcbm9XsfscfOrLpk7OL5em9d2QSuS00EIyrf5HmWDAfpxt0Kst6mKXUvShXMW6MXFdIpQ_3kssd9437MXudrCNr_bkr2j2De3VfOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353039606</pqid></control><display><type>article</type><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Curchod, Basile F E ; Tavernelli, Ivano</creator><creatorcontrib>Curchod, Basile F E ; Tavernelli, Ivano</creatorcontrib><description>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4803835</identifier><identifier>PMID: 23676034</identifier><language>eng</language><publisher>United States</publisher><subject>Approximation ; Derivation ; Dynamics ; Equations of motion ; Mathematical analysis ; Mathematical models ; Schroedinger equation ; Trajectories</subject><ispartof>The Journal of chemical physics, 2013-05, Vol.138 (18), p.184112-184112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</citedby><cites>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23676034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curchod, Basile F E</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</description><subject>Approximation</subject><subject>Derivation</subject><subject>Dynamics</subject><subject>Equations of motion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Schroedinger equation</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AYRQdRbK0ufAHJUhep3zf_cafiHxTcuJUwM5mxKU1SZxKhb2-ltbhzdeFy7l0cQs4RpgiSXeOUa2CaiQMyRtBFrmQBh2QMQDEvJMgROUlpAQCoKD8mI8qkksD4mLy_tlkfzcK7vovr3Jrkq6ztWlPVxpq-dlm1bk1Tu3ST3XXzpjbtvsm-fExD-rPP0hCDcT6bd6tV3X6ckqNglsmf7XJC3h4f3u6f89nr08v97Sx3TPM-t1poxEopqS2XXIbCUgxWBAcFBhWYpR6to44KDqoQQkuFBl1ggnrH2YRcbm9XsfscfOrLpk7OL5em9d2QSuS00EIyrf5HmWDAfpxt0Kst6mKXUvShXMW6MXFdIpQ_3kssd9437MXudrCNr_bkr2j2De3VfOM</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Curchod, Basile F E</creator><creator>Tavernelli, Ivano</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130514</creationdate><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><author>Curchod, Basile F E ; Tavernelli, Ivano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Derivation</topic><topic>Dynamics</topic><topic>Equations of motion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Schroedinger equation</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curchod, Basile F E</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curchod, Basile F E</au><au>Tavernelli, Ivano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-05-14</date><risdate>2013</risdate><volume>138</volume><issue>18</issue><spage>184112</spage><epage>184112</epage><pages>184112-184112</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</abstract><cop>United States</cop><pmid>23676034</pmid><doi>10.1063/1.4803835</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-05, Vol.138 (18), p.184112-184112
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1429856387
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Approximation
Derivation
Dynamics
Equations of motion
Mathematical analysis
Mathematical models
Schroedinger equation
Trajectories
title On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20trajectory-based%20nonadiabatic%20dynamics:%20Bohmian%20dynamics%20versus%20trajectory%20surface%20hopping&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Curchod,%20Basile%20F%20E&rft.date=2013-05-14&rft.volume=138&rft.issue=18&rft.spage=184112&rft.epage=184112&rft.pages=184112-184112&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4803835&rft_dat=%3Cproquest_cross%3E1429856387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1353039606&rft_id=info:pmid/23676034&rfr_iscdi=true