Loading…
On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping
In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implemen...
Saved in:
Published in: | The Journal of chemical physics 2013-05, Vol.138 (18), p.184112-184112 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43 |
container_end_page | 184112 |
container_issue | 18 |
container_start_page | 184112 |
container_title | The Journal of chemical physics |
container_volume | 138 |
creator | Curchod, Basile F E Tavernelli, Ivano |
description | In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories. |
doi_str_mv | 10.1063/1.4803835 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429856387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429856387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</originalsourceid><addsrcrecordid>eNqFkM1Kw0AYRQdRbK0ufAHJUhep3zf_cafiHxTcuJUwM5mxKU1SZxKhb2-ltbhzdeFy7l0cQs4RpgiSXeOUa2CaiQMyRtBFrmQBh2QMQDEvJMgROUlpAQCoKD8mI8qkksD4mLy_tlkfzcK7vovr3Jrkq6ztWlPVxpq-dlm1bk1Tu3ST3XXzpjbtvsm-fExD-rPP0hCDcT6bd6tV3X6ckqNglsmf7XJC3h4f3u6f89nr08v97Sx3TPM-t1poxEopqS2XXIbCUgxWBAcFBhWYpR6to44KDqoQQkuFBl1ggnrH2YRcbm9XsfscfOrLpk7OL5em9d2QSuS00EIyrf5HmWDAfpxt0Kst6mKXUvShXMW6MXFdIpQ_3kssd9437MXudrCNr_bkr2j2De3VfOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353039606</pqid></control><display><type>article</type><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Curchod, Basile F E ; Tavernelli, Ivano</creator><creatorcontrib>Curchod, Basile F E ; Tavernelli, Ivano</creatorcontrib><description>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4803835</identifier><identifier>PMID: 23676034</identifier><language>eng</language><publisher>United States</publisher><subject>Approximation ; Derivation ; Dynamics ; Equations of motion ; Mathematical analysis ; Mathematical models ; Schroedinger equation ; Trajectories</subject><ispartof>The Journal of chemical physics, 2013-05, Vol.138 (18), p.184112-184112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</citedby><cites>FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23676034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curchod, Basile F E</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</description><subject>Approximation</subject><subject>Derivation</subject><subject>Dynamics</subject><subject>Equations of motion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Schroedinger equation</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AYRQdRbK0ufAHJUhep3zf_cafiHxTcuJUwM5mxKU1SZxKhb2-ltbhzdeFy7l0cQs4RpgiSXeOUa2CaiQMyRtBFrmQBh2QMQDEvJMgROUlpAQCoKD8mI8qkksD4mLy_tlkfzcK7vovr3Jrkq6ztWlPVxpq-dlm1bk1Tu3ST3XXzpjbtvsm-fExD-rPP0hCDcT6bd6tV3X6ckqNglsmf7XJC3h4f3u6f89nr08v97Sx3TPM-t1poxEopqS2XXIbCUgxWBAcFBhWYpR6to44KDqoQQkuFBl1ggnrH2YRcbm9XsfscfOrLpk7OL5em9d2QSuS00EIyrf5HmWDAfpxt0Kst6mKXUvShXMW6MXFdIpQ_3kssd9437MXudrCNr_bkr2j2De3VfOM</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Curchod, Basile F E</creator><creator>Tavernelli, Ivano</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130514</creationdate><title>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</title><author>Curchod, Basile F E ; Tavernelli, Ivano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Derivation</topic><topic>Dynamics</topic><topic>Equations of motion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Schroedinger equation</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curchod, Basile F E</creatorcontrib><creatorcontrib>Tavernelli, Ivano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curchod, Basile F E</au><au>Tavernelli, Ivano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-05-14</date><risdate>2013</risdate><volume>138</volume><issue>18</issue><spage>184112</spage><epage>184112</epage><pages>184112-184112</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.</abstract><cop>United States</cop><pmid>23676034</pmid><doi>10.1063/1.4803835</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-05, Vol.138 (18), p.184112-184112 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429856387 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Approximation Derivation Dynamics Equations of motion Mathematical analysis Mathematical models Schroedinger equation Trajectories |
title | On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20trajectory-based%20nonadiabatic%20dynamics:%20Bohmian%20dynamics%20versus%20trajectory%20surface%20hopping&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Curchod,%20Basile%20F%20E&rft.date=2013-05-14&rft.volume=138&rft.issue=18&rft.spage=184112&rft.epage=184112&rft.pages=184112-184112&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4803835&rft_dat=%3Cproquest_cross%3E1429856387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-b85811d7768b4646f9b21fb5fc091f7f3b2e1bc2c254079558671a1cf352ec43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1353039606&rft_id=info:pmid/23676034&rfr_iscdi=true |