Loading…
Coarse-grained simulations of moderately entangled star polyethylene melts
In this paper, a previous coarse-grain model [J. T. Padding and W. J. Briels, J. Chem. Phys. 117, 925 (2002)] to simulate melts of linear polymers has been adapted to simulate polymers with more complex hierarchies. Bond crossings between highly coarse-grained soft particles are prevented by applyin...
Saved in:
Published in: | The Journal of chemical physics 2013-06, Vol.138 (24), p.244912-244912 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a previous coarse-grain model [J. T. Padding and W. J. Briels, J. Chem. Phys. 117, 925 (2002)] to simulate melts of linear polymers has been adapted to simulate polymers with more complex hierarchies. Bond crossings between highly coarse-grained soft particles are prevented by applying an entanglement algorithm. We first test our method on a virtual branch point inside a linear chain to make sure it works effectively when linking two linear arms. Next, we apply our method to study the diffusive and rheological behaviors of a melt of three-armed stars. We find that the diffusive behavior of the three-armed star is very close to that of a linear polymer with the same molecular weight, while its rheological properties are close to those of a linear chain with molecular mass equal to that of the longest linear sub-chain in the star. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4811675 |