Loading…

Multicode Sparse-Sequence CDMA: Approach to Optimum Performance by Linearly Complex WSLAS Detectors

This paper investigates the performance-complexity tradeoff of the wide-sense likelihood ascent search (WSLAS) detectors in large multicode sparse-sequence CDMA. It is illustrated that when each sequence has sparsely only 16 nonzero chips, in a channel load up to 1.05 bits/s/Hz and a broad SNR regio...

Full description

Saved in:
Bibliographic Details
Published in:Wireless personal communications 2013-07, Vol.71 (2), p.1049-1056
Main Authors: Sun, Yi, Xiao, Jizhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the performance-complexity tradeoff of the wide-sense likelihood ascent search (WSLAS) detectors in large multicode sparse-sequence CDMA. It is illustrated that when each sequence has sparsely only 16 nonzero chips, in a channel load up to 1.05 bits/s/Hz and a broad SNR region, the linearly complex WSLAS detectors can achieve the benchmark optimum BER while the complexity is significantly reduced from 0.5 times bit number to a constant less than 30 additions per bit by the sequence sparsity. The evaluation result of multiuse efficiency also shows that the sparse sequences of 16 nonzero chips can already provide a sufficient degree of freedom.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-012-0859-0