Loading…
A topology control algorithm based on D-region fault tolerance
In a wireless network, node failure due to either natural disasters or human intervention can cause network partitioning and other communication problems. For this reason, a wireless network should be fault tolerant. At present, most researchers use k-connectivity to measure fault tolerance, which r...
Saved in:
Published in: | Science China. Information sciences 2013-07, Vol.56 (7), p.29-37 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a wireless network, node failure due to either natural disasters or human intervention can cause network partitioning and other communication problems. For this reason, a wireless network should be fault tolerant. At present, most researchers use k-connectivity to measure fault tolerance, which requires the network to be connected after the failure of any up to k-1 nodes. However~ wireless network node failures are usually spatially related, and particularly in military applications, nodes from the same limited area can fail together. As a metric of fault-tolerance, k-connectivity fails to capture the spatial relativity of faults and hardly satisfies the fault tolerance requirements of a wireless network design. In this paper, a new metric of fault-tolerance, termed D-region fault tolerance, is introduced to measure wireless network fault tolerance. A D-region fault tolerant network means that even after all the nodes have failed in a circular region with diameter D, it still remains connected. Based on D-region fault tolerance, we propose two fault-tolerant topology control algorithms-- the global region fault tolerance algorithm (GRFT) and the localized region fault tolerance algorithm (LRFT). It is theoretically proven that both algorithms are able to generate a network with D-region fault tolerance. Simulation results indicate that with the same fault tolerance capabilities, networks based on both GRFT and LRFT algorithms have a lower transmission radius and lower logical degree. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-012-4652-1 |