Loading…

History matching and uncertainty quantification of facies models with multiple geological interpretations

Uncertainty quantification is currently one of the leading challenges in the geosciences, in particular in reservoir modeling. A wealth of subsurface data as well as expert knowledge are available to quantify uncertainty and state predictions on reservoir performance or reserves. The geosciences com...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences 2013-08, Vol.17 (4), p.609-621
Main Authors: Park, Hyucksoo, Scheidt, CĂ©line, Fenwick, Darryl, Boucher, Alexandre, Caers, Jef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uncertainty quantification is currently one of the leading challenges in the geosciences, in particular in reservoir modeling. A wealth of subsurface data as well as expert knowledge are available to quantify uncertainty and state predictions on reservoir performance or reserves. The geosciences component within this larger modeling framework is partially an interpretive science. Geologists and geophysicists interpret data to postulate on the nature of the depositional environment, for example on the type of fracture system, the nature of faulting, and the type of rock physics model. Often, several alternative scenarios or interpretations are offered, including some associated belief quantified with probabilities. In the context of facies modeling, this could result in various interpretations of facies architecture, associations, geometries, and the way they are distributed in space. A quantitative approach to specify this uncertainty is to provide a set of alternative 3D training images from which several geostatistical models can be generated. In this paper, we consider quantifying uncertainty on facies models in the early development stage of a reservoir when there is still considerable uncertainty on the nature of the spatial distribution of the facies. At this stage, production data are available to further constrain uncertainty. We develop a workflow that consists of two steps: (1) determining which training images are no longer consistent with production data and should be rejected and (2) to history match with a given fixed training image. We illustrate our ideas and methodology on a test case derived from a real field case of predicting flow in a newly planned well in a turbidite reservoir off the African West coast.
ISSN:1420-0597
1573-1499
DOI:10.1007/s10596-013-9343-5