Loading…
Compact radio-frequency resonator for cryogenic ion traps
We report on the investigation and implementation of a lumped-component, radio-frequency resonator used in a cryogenic vacuum environment to drive an ion trap. The resonator was required to achieve the voltages necessary to trap (~100 V), while dissipating very little power. Ultimately, for an input...
Saved in:
Published in: | Review of scientific instruments 2012-08, Vol.83 (8), p.084705-084705 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the investigation and implementation of a lumped-component, radio-frequency resonator used in a cryogenic vacuum environment to drive an ion trap. The resonator was required to achieve the voltages necessary to trap (~100 V), while dissipating very little power. Ultimately, for an input voltage of 1.35 V, a voltage gain of 100 was measured at 5.7 K, using a design which dissipated only 18 mW. The resonator operated at a frequency of 7.64 MHz and had a Q of 700. Single (40)Ca(+) ions were confined in a trap driven by this device, providing proof of successful resonator operation at low temperature. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4737889 |