Loading…

Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns

Anisotropic nanopatterns have potentials in constructing novel plasmonic structures which have various applications in such as super-resolution microscopy, medicine, and sensors. However, it remains challenging to build big anisotropic nanopatterns that are suitable for big noble metal nanoparticles...

Full description

Saved in:
Bibliographic Details
Published in:Chinese science bulletin 2013-07, Vol.58 (21), p.2646-2650
Main Authors: Fu, YanMing, Chao, Jie, Liu, HuaJie, Fan, ChunHai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623
cites cdi_FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623
container_end_page 2650
container_issue 21
container_start_page 2646
container_title Chinese science bulletin
container_volume 58
creator Fu, YanMing
Chao, Jie
Liu, HuaJie
Fan, ChunHai
description Anisotropic nanopatterns have potentials in constructing novel plasmonic structures which have various applications in such as super-resolution microscopy, medicine, and sensors. However, it remains challenging to build big anisotropic nanopatterns that are suitable for big noble metal nanoparticles. Herein, we report a simple and reliable strategy for constructing DNA origami-based big anisotropic nanopatterns with controlled size and shape, nanoscale resolution, and fully addressability. Two kinds of basic DNA origami nanoblocks — cross-shaped and rectangular DNA origami units were used. We have demonstrated that by encoding nanoblocks’ edges, anisotropic higher-order nanopatterns, such as dimer, trimer, tetramer and mini “windmill” like pentamer nanopatterns could be constructed. To show the potential use as template to direct the assembly of anisotropic nanoparticles arrays, a proof of concept work was conducted by anchoring streptavidin nanoparticles on the “windmill” template to form a chiral array. Significantly, these nanopatterns have the sizes of hundreds of nanometers, which are in principle also suitable for big noble metal nanoparticles arrays.
doi_str_mv 10.1007/s11434-012-5530-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429869152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46425909</cqvip_id><sourcerecordid>1429869152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhiMEEqXlB3Ai3Li4ePy19rEqH0WqKFLpEVmT7CTrkthbO3vov6-XVBw5zYz0vKOZp2neAT8HzjefCoCSinEQTGvJmXzRnIA1wJxW8LL2nAMzWtrXzZtS7uskYSNOmt8_cxozzjNt20LTwLAUmrvpsU1D-_nHRZtyGHEObcSYuin1f0ob4pJajKGkJad96NtdGHeUWcpbyn_BPS4L5VjOmlcDToXePtfT5u7rl1-XV-z65tv3y4tr1itQCxPWWb1Fqcmg1s6i2NAgeodEg-l4BwNx4xDQKmG36JRD2RunO7uxHIyQp83Hde8-p4cDlcXPofQ0TRgpHYoHJZw1DvQRhRXtcyol0-D3OcyYHz1wf1TpV5W-qvRHlV7WjFgzpbJxpOzv0yHH-tF_Q-_X0IDJ45hD8Xe3goOq7oUUTlXiw_MpuxTHh7r53y3KKKEdd_IJQ8iLrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429869152</pqid></control><display><type>article</type><title>Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns</title><source>Springer Online Journals</source><creator>Fu, YanMing ; Chao, Jie ; Liu, HuaJie ; Fan, ChunHai</creator><creatorcontrib>Fu, YanMing ; Chao, Jie ; Liu, HuaJie ; Fan, ChunHai</creatorcontrib><description>Anisotropic nanopatterns have potentials in constructing novel plasmonic structures which have various applications in such as super-resolution microscopy, medicine, and sensors. However, it remains challenging to build big anisotropic nanopatterns that are suitable for big noble metal nanoparticles. Herein, we report a simple and reliable strategy for constructing DNA origami-based big anisotropic nanopatterns with controlled size and shape, nanoscale resolution, and fully addressability. Two kinds of basic DNA origami nanoblocks — cross-shaped and rectangular DNA origami units were used. We have demonstrated that by encoding nanoblocks’ edges, anisotropic higher-order nanopatterns, such as dimer, trimer, tetramer and mini “windmill” like pentamer nanopatterns could be constructed. To show the potential use as template to direct the assembly of anisotropic nanoparticles arrays, a proof of concept work was conducted by anchoring streptavidin nanoparticles on the “windmill” template to form a chiral array. Significantly, these nanopatterns have the sizes of hundreds of nanometers, which are in principle also suitable for big noble metal nanoparticles arrays.</description><identifier>ISSN: 1001-6538</identifier><identifier>EISSN: 1861-9541</identifier><identifier>DOI: 10.1007/s11434-012-5530-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Chemistry/Food Science ; DNA ; Earth Sciences ; Engineering ; Humanities and Social Sciences ; Life Sciences ; medicine ; microscopy ; multidisciplinary ; nanoparticles ; Physics ; Science ; Science (multidisciplinary) ; streptavidin ; 体结构 ; 大各向异性 ; 折纸 ; 程序化 ; 自组装 ; 金属纳米粒子 ; 高阶</subject><ispartof>Chinese science bulletin, 2013-07, Vol.58 (21), p.2646-2650</ispartof><rights>The Author(s) 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623</citedby><cites>FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86894X/86894X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11434-012-5530-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11434-012-5530-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1644,27924,27925,41418,42487,51318</link.rule.ids></links><search><creatorcontrib>Fu, YanMing</creatorcontrib><creatorcontrib>Chao, Jie</creatorcontrib><creatorcontrib>Liu, HuaJie</creatorcontrib><creatorcontrib>Fan, ChunHai</creatorcontrib><title>Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns</title><title>Chinese science bulletin</title><addtitle>Chin. Sci. Bull</addtitle><addtitle>Chinese Science Bulletin</addtitle><description>Anisotropic nanopatterns have potentials in constructing novel plasmonic structures which have various applications in such as super-resolution microscopy, medicine, and sensors. However, it remains challenging to build big anisotropic nanopatterns that are suitable for big noble metal nanoparticles. Herein, we report a simple and reliable strategy for constructing DNA origami-based big anisotropic nanopatterns with controlled size and shape, nanoscale resolution, and fully addressability. Two kinds of basic DNA origami nanoblocks — cross-shaped and rectangular DNA origami units were used. We have demonstrated that by encoding nanoblocks’ edges, anisotropic higher-order nanopatterns, such as dimer, trimer, tetramer and mini “windmill” like pentamer nanopatterns could be constructed. To show the potential use as template to direct the assembly of anisotropic nanoparticles arrays, a proof of concept work was conducted by anchoring streptavidin nanoparticles on the “windmill” template to form a chiral array. Significantly, these nanopatterns have the sizes of hundreds of nanometers, which are in principle also suitable for big noble metal nanoparticles arrays.</description><subject>Chemistry/Food Science</subject><subject>DNA</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>medicine</subject><subject>microscopy</subject><subject>multidisciplinary</subject><subject>nanoparticles</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>streptavidin</subject><subject>体结构</subject><subject>大各向异性</subject><subject>折纸</subject><subject>程序化</subject><subject>自组装</subject><subject>金属纳米粒子</subject><subject>高阶</subject><issn>1001-6538</issn><issn>1861-9541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhiMEEqXlB3Ai3Li4ePy19rEqH0WqKFLpEVmT7CTrkthbO3vov6-XVBw5zYz0vKOZp2neAT8HzjefCoCSinEQTGvJmXzRnIA1wJxW8LL2nAMzWtrXzZtS7uskYSNOmt8_cxozzjNt20LTwLAUmrvpsU1D-_nHRZtyGHEObcSYuin1f0ob4pJajKGkJad96NtdGHeUWcpbyn_BPS4L5VjOmlcDToXePtfT5u7rl1-XV-z65tv3y4tr1itQCxPWWb1Fqcmg1s6i2NAgeodEg-l4BwNx4xDQKmG36JRD2RunO7uxHIyQp83Hde8-p4cDlcXPofQ0TRgpHYoHJZw1DvQRhRXtcyol0-D3OcyYHz1wf1TpV5W-qvRHlV7WjFgzpbJxpOzv0yHH-tF_Q-_X0IDJ45hD8Xe3goOq7oUUTlXiw_MpuxTHh7r53y3KKKEdd_IJQ8iLrg</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Fu, YanMing</creator><creator>Chao, Jie</creator><creator>Liu, HuaJie</creator><creator>Fan, ChunHai</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>FBQ</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20130701</creationdate><title>Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns</title><author>Fu, YanMing ; Chao, Jie ; Liu, HuaJie ; Fan, ChunHai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry/Food Science</topic><topic>DNA</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>medicine</topic><topic>microscopy</topic><topic>multidisciplinary</topic><topic>nanoparticles</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>streptavidin</topic><topic>体结构</topic><topic>大各向异性</topic><topic>折纸</topic><topic>程序化</topic><topic>自组装</topic><topic>金属纳米粒子</topic><topic>高阶</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, YanMing</creatorcontrib><creatorcontrib>Chao, Jie</creatorcontrib><creatorcontrib>Liu, HuaJie</creatorcontrib><creatorcontrib>Fan, ChunHai</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Chinese science bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, YanMing</au><au>Chao, Jie</au><au>Liu, HuaJie</au><au>Fan, ChunHai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns</atitle><jtitle>Chinese science bulletin</jtitle><stitle>Chin. Sci. Bull</stitle><addtitle>Chinese Science Bulletin</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>58</volume><issue>21</issue><spage>2646</spage><epage>2650</epage><pages>2646-2650</pages><issn>1001-6538</issn><eissn>1861-9541</eissn><abstract>Anisotropic nanopatterns have potentials in constructing novel plasmonic structures which have various applications in such as super-resolution microscopy, medicine, and sensors. However, it remains challenging to build big anisotropic nanopatterns that are suitable for big noble metal nanoparticles. Herein, we report a simple and reliable strategy for constructing DNA origami-based big anisotropic nanopatterns with controlled size and shape, nanoscale resolution, and fully addressability. Two kinds of basic DNA origami nanoblocks — cross-shaped and rectangular DNA origami units were used. We have demonstrated that by encoding nanoblocks’ edges, anisotropic higher-order nanopatterns, such as dimer, trimer, tetramer and mini “windmill” like pentamer nanopatterns could be constructed. To show the potential use as template to direct the assembly of anisotropic nanoparticles arrays, a proof of concept work was conducted by anchoring streptavidin nanoparticles on the “windmill” template to form a chiral array. Significantly, these nanopatterns have the sizes of hundreds of nanometers, which are in principle also suitable for big noble metal nanoparticles arrays.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11434-012-5530-3</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-6538
ispartof Chinese science bulletin, 2013-07, Vol.58 (21), p.2646-2650
issn 1001-6538
1861-9541
language eng
recordid cdi_proquest_miscellaneous_1429869152
source Springer Online Journals
subjects Chemistry/Food Science
DNA
Earth Sciences
Engineering
Humanities and Social Sciences
Life Sciences
medicine
microscopy
multidisciplinary
nanoparticles
Physics
Science
Science (multidisciplinary)
streptavidin
体结构
大各向异性
折纸
程序化
自组装
金属纳米粒子
高阶
title Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmed%20self-assembly%20of%20DNA%20origami%20nanoblocks%20into%20anisotropic%20higher-order%20nanopatterns&rft.jtitle=Chinese%20science%20bulletin&rft.au=Fu,%20YanMing&rft.date=2013-07-01&rft.volume=58&rft.issue=21&rft.spage=2646&rft.epage=2650&rft.pages=2646-2650&rft.issn=1001-6538&rft.eissn=1861-9541&rft_id=info:doi/10.1007/s11434-012-5530-3&rft_dat=%3Cproquest_cross%3E1429869152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-28985da35e6a5598a27ef2c9aeef6b0b1fe069a1a8428da949a3c695b87801623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429869152&rft_id=info:pmid/&rft_cqvip_id=46425909&rfr_iscdi=true