Loading…

Ferromagnetic resonance driven by an ac current: A brief review

Excitation of ferromagnetic resonance (FMR) by an ac current has been observed in macroscopic ferromagnetic films for decades and typically relies on the ac Oersted field of the current to drive magnetic moments into precession and classical rectification of ac signals to detect the resonance. Recen...

Full description

Saved in:
Bibliographic Details
Published in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2013-03, Vol.39 (3), p.247-251
Main Authors: Wang, C., Seinige, H., Tsoi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Excitation of ferromagnetic resonance (FMR) by an ac current has been observed in macroscopic ferromagnetic films for decades and typically relies on the ac Oersted field of the current to drive magnetic moments into precession and classical rectification of ac signals to detect the resonance. Recently, current-driven ferromagnetic resonances have attracted renewed attention with the discovery of the spin-transfer torque (STT) effect due to its potential applications in magnetic memory and microwave technologies. Here the STT associated with the ac current is used to drive magnetodynamics on the nanoscale that enables FMR studies in sample volumes smaller by a factor of 1000 compared to conventional resonance techniques. In this paper, we briefly review the basics of STT–FMR technique and the results of various STT–FMR experiments.
ISSN:1063-777X
1090-6517
DOI:10.1063/1.4794998