Loading…

Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method

In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global s...

Full description

Saved in:
Bibliographic Details
Published in:Meccanica (Milan) 2013-03, Vol.48 (2), p.259-274
Main Authors: Sheikhlou, Mehrdad, Rezazadeh, Ghader, Shabani, Rasool
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3
cites cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3
container_end_page 274
container_issue 2
container_start_page 259
container_title Meccanica (Milan)
container_volume 48
creator Sheikhlou, Mehrdad
Rezazadeh, Ghader
Shabani, Rasool
description In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.
doi_str_mv 10.1007/s11012-012-9598-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429894038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429894038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</originalsourceid><addsrcrecordid>eNp9kMFu2zAMhoWiA5pme4DedNzFmyRbSXQcgnUdEGCHdmeBlqlEgWNlohwsr9Enrjz3vAMhUvg__uDP2IMUX6QQ668kpZCqmspos6nUDVtIvS7TqtncsoUQSlerRus7dk90FKJQQi_Y63OGNvQhXzkMHc8xUYgD9PwS2gS59OUf-isF4tFz4KfgUqzoAD5zGtsjuowTV2Qc-zKlSLmAjp8hwQlzKi3-dSHP20YKw55fIIV_c3EKGd-divoQu4_sg4ee8NP7u2S_H7-_bJ-q3a8fP7ffdpWrlcyVEfXGd6prVyvU4GqnjGyc8k5C1xlsayNbUXut1grb1tcgcK2FBqy9AdlAvWSf573nFP-MSNmeAjnsexgwjmRlo8zGNMWmSOUsLbcTJfT2nMIJ0tVKYaf87Zy_nWrK36rCqJmhoh32mOwxjqkcTP-B3gA4Go1n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429894038</pqid></control><display><type>article</type><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><source>Springer Link</source><creator>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</creator><creatorcontrib>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</creatorcontrib><description>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-012-9598-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Electrostatics ; Excitation ; Initial conditions ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Phase diagrams ; Physics ; Physics and Astronomy ; Stability</subject><ispartof>Meccanica (Milan), 2013-03, Vol.48 (2), p.259-274</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</citedby><cites>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sheikhlou, Mehrdad</creatorcontrib><creatorcontrib>Rezazadeh, Ghader</creatorcontrib><creatorcontrib>Shabani, Rasool</creatorcontrib><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</description><subject>Asymptotic properties</subject><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Electrostatics</subject><subject>Excitation</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu2zAMhoWiA5pme4DedNzFmyRbSXQcgnUdEGCHdmeBlqlEgWNlohwsr9Enrjz3vAMhUvg__uDP2IMUX6QQ668kpZCqmspos6nUDVtIvS7TqtncsoUQSlerRus7dk90FKJQQi_Y63OGNvQhXzkMHc8xUYgD9PwS2gS59OUf-isF4tFz4KfgUqzoAD5zGtsjuowTV2Qc-zKlSLmAjp8hwQlzKi3-dSHP20YKw55fIIV_c3EKGd-divoQu4_sg4ee8NP7u2S_H7-_bJ-q3a8fP7ffdpWrlcyVEfXGd6prVyvU4GqnjGyc8k5C1xlsayNbUXut1grb1tcgcK2FBqy9AdlAvWSf573nFP-MSNmeAjnsexgwjmRlo8zGNMWmSOUsLbcTJfT2nMIJ0tVKYaf87Zy_nWrK36rCqJmhoh32mOwxjqkcTP-B3gA4Go1n</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sheikhlou, Mehrdad</creator><creator>Rezazadeh, Ghader</creator><creator>Shabani, Rasool</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130301</creationdate><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><author>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Electrostatics</topic><topic>Excitation</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikhlou, Mehrdad</creatorcontrib><creatorcontrib>Rezazadeh, Ghader</creatorcontrib><creatorcontrib>Shabani, Rasool</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikhlou, Mehrdad</au><au>Rezazadeh, Ghader</au><au>Shabani, Rasool</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>48</volume><issue>2</issue><spage>259</spage><epage>274</epage><pages>259-274</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-012-9598-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2013-03, Vol.48 (2), p.259-274
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_miscellaneous_1429894038
source Springer Link
subjects Asymptotic properties
Automotive Engineering
Civil Engineering
Classical Mechanics
Electrostatics
Excitation
Initial conditions
Mathematical analysis
Mathematical models
Mechanical Engineering
Phase diagrams
Physics
Physics and Astronomy
Stability
title Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20torsional%20vibration%20analysis%20of%20a%20micro-shaft%20subjected%20to%20an%20electrostatic%20parametric%20excitation%20using%20variational%20iteration%20method&rft.jtitle=Meccanica%20(Milan)&rft.au=Sheikhlou,%20Mehrdad&rft.date=2013-03-01&rft.volume=48&rft.issue=2&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-012-9598-2&rft_dat=%3Cproquest_cross%3E1429894038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429894038&rft_id=info:pmid/&rfr_iscdi=true