Loading…
Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method
In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global s...
Saved in:
Published in: | Meccanica (Milan) 2013-03, Vol.48 (2), p.259-274 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3 |
container_end_page | 274 |
container_issue | 2 |
container_start_page | 259 |
container_title | Meccanica (Milan) |
container_volume | 48 |
creator | Sheikhlou, Mehrdad Rezazadeh, Ghader Shabani, Rasool |
description | In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method. |
doi_str_mv | 10.1007/s11012-012-9598-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429894038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429894038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</originalsourceid><addsrcrecordid>eNp9kMFu2zAMhoWiA5pme4DedNzFmyRbSXQcgnUdEGCHdmeBlqlEgWNlohwsr9Enrjz3vAMhUvg__uDP2IMUX6QQ668kpZCqmspos6nUDVtIvS7TqtncsoUQSlerRus7dk90FKJQQi_Y63OGNvQhXzkMHc8xUYgD9PwS2gS59OUf-isF4tFz4KfgUqzoAD5zGtsjuowTV2Qc-zKlSLmAjp8hwQlzKi3-dSHP20YKw55fIIV_c3EKGd-divoQu4_sg4ee8NP7u2S_H7-_bJ-q3a8fP7ffdpWrlcyVEfXGd6prVyvU4GqnjGyc8k5C1xlsayNbUXut1grb1tcgcK2FBqy9AdlAvWSf573nFP-MSNmeAjnsexgwjmRlo8zGNMWmSOUsLbcTJfT2nMIJ0tVKYaf87Zy_nWrK36rCqJmhoh32mOwxjqkcTP-B3gA4Go1n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429894038</pqid></control><display><type>article</type><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><source>Springer Link</source><creator>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</creator><creatorcontrib>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</creatorcontrib><description>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-012-9598-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Electrostatics ; Excitation ; Initial conditions ; Mathematical analysis ; Mathematical models ; Mechanical Engineering ; Phase diagrams ; Physics ; Physics and Astronomy ; Stability</subject><ispartof>Meccanica (Milan), 2013-03, Vol.48 (2), p.259-274</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</citedby><cites>FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Sheikhlou, Mehrdad</creatorcontrib><creatorcontrib>Rezazadeh, Ghader</creatorcontrib><creatorcontrib>Shabani, Rasool</creatorcontrib><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</description><subject>Asymptotic properties</subject><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Electrostatics</subject><subject>Excitation</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu2zAMhoWiA5pme4DedNzFmyRbSXQcgnUdEGCHdmeBlqlEgWNlohwsr9Enrjz3vAMhUvg__uDP2IMUX6QQ668kpZCqmspos6nUDVtIvS7TqtncsoUQSlerRus7dk90FKJQQi_Y63OGNvQhXzkMHc8xUYgD9PwS2gS59OUf-isF4tFz4KfgUqzoAD5zGtsjuowTV2Qc-zKlSLmAjp8hwQlzKi3-dSHP20YKw55fIIV_c3EKGd-divoQu4_sg4ee8NP7u2S_H7-_bJ-q3a8fP7ffdpWrlcyVEfXGd6prVyvU4GqnjGyc8k5C1xlsayNbUXut1grb1tcgcK2FBqy9AdlAvWSf573nFP-MSNmeAjnsexgwjmRlo8zGNMWmSOUsLbcTJfT2nMIJ0tVKYaf87Zy_nWrK36rCqJmhoh32mOwxjqkcTP-B3gA4Go1n</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sheikhlou, Mehrdad</creator><creator>Rezazadeh, Ghader</creator><creator>Shabani, Rasool</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130301</creationdate><title>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</title><author>Sheikhlou, Mehrdad ; Rezazadeh, Ghader ; Shabani, Rasool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Electrostatics</topic><topic>Excitation</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikhlou, Mehrdad</creatorcontrib><creatorcontrib>Rezazadeh, Ghader</creatorcontrib><creatorcontrib>Shabani, Rasool</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikhlou, Mehrdad</au><au>Rezazadeh, Ghader</au><au>Shabani, Rasool</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>48</volume><issue>2</issue><spage>259</spage><epage>274</epage><pages>259-274</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>In this article stability and parametrically excited oscillations of a two stage micro-shaft located in a Newtonian fluid with arrayed electrostatic actuation system is investigated. The static stability of the system is studied and the fixed points of the micro-shaft are determined and the global stability of the fixed points is studied by plotting the micro-shaft phase diagrams for different initial conditions. Subsequently the governing equation of motion is linearized about static equilibrium situation using calculus of variation theory and discretized using the Galerkin’s method. Then the system is modeled as a single-degree-of-freedom model and a Mathieu type equation is obtained. The Variational Iteration Method (VIM) is used as an asymptotic analytical method to obtain approximate solutions for parametric equation and the stable and unstable regions are evaluated. The results show that using a parametric excitation with an appropriate frequency and amplitude the system can be stabilized in the vicinity of the pitch fork bifurcation point. The time history and phase diagrams of the system are plotted for certain values of initial conditions and parameter values. Asymptotic analytically obtained results are verified by using direct numerical integration method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-012-9598-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6455 |
ispartof | Meccanica (Milan), 2013-03, Vol.48 (2), p.259-274 |
issn | 0025-6455 1572-9648 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429894038 |
source | Springer Link |
subjects | Asymptotic properties Automotive Engineering Civil Engineering Classical Mechanics Electrostatics Excitation Initial conditions Mathematical analysis Mathematical models Mechanical Engineering Phase diagrams Physics Physics and Astronomy Stability |
title | Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20torsional%20vibration%20analysis%20of%20a%20micro-shaft%20subjected%20to%20an%20electrostatic%20parametric%20excitation%20using%20variational%20iteration%20method&rft.jtitle=Meccanica%20(Milan)&rft.au=Sheikhlou,%20Mehrdad&rft.date=2013-03-01&rft.volume=48&rft.issue=2&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-012-9598-2&rft_dat=%3Cproquest_cross%3E1429894038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-9038fd2db66e5ac3c2914c2fc1add9eb391b03f5272ebbf3a0e7505ae3f9a14a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429894038&rft_id=info:pmid/&rfr_iscdi=true |