Loading…

Rational and complexiton solutions of the (3+1)-dimensional KP equation

In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2013-05, Vol.72 (3), p.605-613
Main Authors: Cheng, Li, Zhang, Yi, Tong, Zi-Shuang, Ge, Jian-Ya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3
cites cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3
container_end_page 613
container_issue 3
container_start_page 605
container_title Nonlinear dynamics
container_volume 72
creator Cheng, Li
Zhang, Yi
Tong, Zi-Shuang
Ge, Jian-Ya
description In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.
doi_str_mv 10.1007/s11071-012-0738-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429895987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259422896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</originalsourceid><addsrcrecordid>eNp1kFFLwzAURoMoOKc_wLeCLxOJ5ibpkjzK0CkKiijsLaTtjXZ0zda04P69nRUEwac83HM-wiHkFNglMKauIgBTQBlwypTQdLtHRpAqQfnULPbJiBkuKTNscUiOYlwyxgRnekTmL64tQ-2qxNVFkofVusLPsg11EkPV7U4xCT5pPzCZiAs4p0W5wjoOysNzgpvue-CYHHhXRTz5ecfk7fbmdXZHH5_m97PrR5oLaVoqJQdMUXuRMkCZiUJl3imXeUhNpjT3EoUGEK7gTkhwKTrIp0o4nnl0KMZkMuyum7DpMLZ2VcYcq8rVGLpoQXKjTWq06tGzP-gydE3_72g5T43kXJtpT8FA5U2IsUFv1025cs3WArO7tHZIa_u0dpfWbnuHD07s2fodm9_l_6UvizJ7jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259422896</pqid></control><display><type>article</type><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><source>Springer Link</source><creator>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</creator><creatorcontrib>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</creatorcontrib><description>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-012-0738-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Linear systems ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Partial differential equations ; Vibration</subject><ispartof>Nonlinear dynamics, 2013-05, Vol.72 (3), p.605-613</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</citedby><cites>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Tong, Zi-Shuang</creatorcontrib><creatorcontrib>Ge, Jian-Ya</creatorcontrib><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAURoMoOKc_wLeCLxOJ5ibpkjzK0CkKiijsLaTtjXZ0zda04P69nRUEwac83HM-wiHkFNglMKauIgBTQBlwypTQdLtHRpAqQfnULPbJiBkuKTNscUiOYlwyxgRnekTmL64tQ-2qxNVFkofVusLPsg11EkPV7U4xCT5pPzCZiAs4p0W5wjoOysNzgpvue-CYHHhXRTz5ecfk7fbmdXZHH5_m97PrR5oLaVoqJQdMUXuRMkCZiUJl3imXeUhNpjT3EoUGEK7gTkhwKTrIp0o4nnl0KMZkMuyum7DpMLZ2VcYcq8rVGLpoQXKjTWq06tGzP-gydE3_72g5T43kXJtpT8FA5U2IsUFv1025cs3WArO7tHZIa_u0dpfWbnuHD07s2fodm9_l_6UvizJ7jQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Cheng, Li</creator><creator>Zhang, Yi</creator><creator>Tong, Zi-Shuang</creator><creator>Ge, Jian-Ya</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130501</creationdate><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><author>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Tong, Zi-Shuang</creatorcontrib><creatorcontrib>Ge, Jian-Ya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Li</au><au>Zhang, Yi</au><au>Tong, Zi-Shuang</au><au>Ge, Jian-Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational and complexiton solutions of the (3+1)-dimensional KP equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>72</volume><issue>3</issue><spage>605</spage><epage>613</epage><pages>605-613</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-012-0738-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2013-05, Vol.72 (3), p.605-613
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1429895987
source Springer Link
subjects Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Linear systems
Mathematical analysis
Matrix methods
Mechanical Engineering
Nonlinear dynamics
Original Paper
Partial differential equations
Vibration
title Rational and complexiton solutions of the (3+1)-dimensional KP equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20and%20complexiton%20solutions%20of%20the%20(3+1)-dimensional%20KP%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Cheng,%20Li&rft.date=2013-05-01&rft.volume=72&rft.issue=3&rft.spage=605&rft.epage=613&rft.pages=605-613&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-012-0738-y&rft_dat=%3Cproquest_cross%3E2259422896%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259422896&rft_id=info:pmid/&rfr_iscdi=true