Loading…
Rational and complexiton solutions of the (3+1)-dimensional KP equation
In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and...
Saved in:
Published in: | Nonlinear dynamics 2013-05, Vol.72 (3), p.605-613 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3 |
container_end_page | 613 |
container_issue | 3 |
container_start_page | 605 |
container_title | Nonlinear dynamics |
container_volume | 72 |
creator | Cheng, Li Zhang, Yi Tong, Zi-Shuang Ge, Jian-Ya |
description | In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution. |
doi_str_mv | 10.1007/s11071-012-0738-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429895987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259422896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</originalsourceid><addsrcrecordid>eNp1kFFLwzAURoMoOKc_wLeCLxOJ5ibpkjzK0CkKiijsLaTtjXZ0zda04P69nRUEwac83HM-wiHkFNglMKauIgBTQBlwypTQdLtHRpAqQfnULPbJiBkuKTNscUiOYlwyxgRnekTmL64tQ-2qxNVFkofVusLPsg11EkPV7U4xCT5pPzCZiAs4p0W5wjoOysNzgpvue-CYHHhXRTz5ecfk7fbmdXZHH5_m97PrR5oLaVoqJQdMUXuRMkCZiUJl3imXeUhNpjT3EoUGEK7gTkhwKTrIp0o4nnl0KMZkMuyum7DpMLZ2VcYcq8rVGLpoQXKjTWq06tGzP-gydE3_72g5T43kXJtpT8FA5U2IsUFv1025cs3WArO7tHZIa_u0dpfWbnuHD07s2fodm9_l_6UvizJ7jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259422896</pqid></control><display><type>article</type><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><source>Springer Link</source><creator>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</creator><creatorcontrib>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</creatorcontrib><description>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-012-0738-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Linear systems ; Mathematical analysis ; Matrix methods ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Partial differential equations ; Vibration</subject><ispartof>Nonlinear dynamics, 2013-05, Vol.72 (3), p.605-613</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</citedby><cites>FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Tong, Zi-Shuang</creatorcontrib><creatorcontrib>Ge, Jian-Ya</creatorcontrib><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAURoMoOKc_wLeCLxOJ5ibpkjzK0CkKiijsLaTtjXZ0zda04P69nRUEwac83HM-wiHkFNglMKauIgBTQBlwypTQdLtHRpAqQfnULPbJiBkuKTNscUiOYlwyxgRnekTmL64tQ-2qxNVFkofVusLPsg11EkPV7U4xCT5pPzCZiAs4p0W5wjoOysNzgpvue-CYHHhXRTz5ecfk7fbmdXZHH5_m97PrR5oLaVoqJQdMUXuRMkCZiUJl3imXeUhNpjT3EoUGEK7gTkhwKTrIp0o4nnl0KMZkMuyum7DpMLZ2VcYcq8rVGLpoQXKjTWq06tGzP-gydE3_72g5T43kXJtpT8FA5U2IsUFv1025cs3WArO7tHZIa_u0dpfWbnuHD07s2fodm9_l_6UvizJ7jQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Cheng, Li</creator><creator>Zhang, Yi</creator><creator>Tong, Zi-Shuang</creator><creator>Ge, Jian-Ya</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130501</creationdate><title>Rational and complexiton solutions of the (3+1)-dimensional KP equation</title><author>Cheng, Li ; Zhang, Yi ; Tong, Zi-Shuang ; Ge, Jian-Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Tong, Zi-Shuang</creatorcontrib><creatorcontrib>Ge, Jian-Ya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Li</au><au>Zhang, Yi</au><au>Tong, Zi-Shuang</au><au>Ge, Jian-Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational and complexiton solutions of the (3+1)-dimensional KP equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>72</volume><issue>3</issue><spage>605</spage><epage>613</epage><pages>605-613</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the (3+1)-dimensional KP equation is mainly discussed. Based on the Wronskian technique, the double Wronskian solution is established. Generating functions for matrix entries satisfy the linear system of partial differential equations involving free parameters. Rational, Matveev, and complexiton solutions are obtained by taking special cases in a general double Wronskian solution.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-012-0738-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2013-05, Vol.72 (3), p.605-613 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1429895987 |
source | Springer Link |
subjects | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Linear systems Mathematical analysis Matrix methods Mechanical Engineering Nonlinear dynamics Original Paper Partial differential equations Vibration |
title | Rational and complexiton solutions of the (3+1)-dimensional KP equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20and%20complexiton%20solutions%20of%20the%20(3+1)-dimensional%20KP%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Cheng,%20Li&rft.date=2013-05-01&rft.volume=72&rft.issue=3&rft.spage=605&rft.epage=613&rft.pages=605-613&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-012-0738-y&rft_dat=%3Cproquest_cross%3E2259422896%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4421e5e8f3501e4b3d7bfa7abf159b782f4e38113ad2a341a5ea1c673a2bfeae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259422896&rft_id=info:pmid/&rfr_iscdi=true |