Loading…

Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties

Shear wave velocity ( V S ) is a basic engineering soil property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine V S indirectly by common in-situ tests, for instance the standard penetration test. In this paper, the relation between V S and geote...

Full description

Saved in:
Bibliographic Details
Published in:Arabian Journal for Science and Engineering 2013-04, Vol.38 (4), p.829-838
Main Authors: Mola-Abasi, H., Eslami, A., Shourijeh, P. Tabatabaie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743
cites cdi_FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743
container_end_page 838
container_issue 4
container_start_page 829
container_title Arabian Journal for Science and Engineering
container_volume 38
creator Mola-Abasi, H.
Eslami, A.
Shourijeh, P. Tabatabaie
description Shear wave velocity ( V S ) is a basic engineering soil property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine V S indirectly by common in-situ tests, for instance the standard penetration test. In this paper, the relation between V S and geotechnical soil parameters such as standard penetration test blow counts (N 160 ), effective stress and fines content, as well as overburden stress ratio is investigated. A new polynomial model is proposed to correlate geotechnical parameters and V S , predicated on a total of 620 data sets, including field investigation records for the Kocaeli (Turkey, 1999) and Chi-Chi (Taiwan, 1999) earthquakes. This study addresses the question of whether group method of data handling (GMDH) type neural networks (NN) optimized using genetic algorithms could be used to (1) estimate V S based on specified geotechnical variables, (2) assess the influence of each variable on V S . Results suggest that GMDH-type NN, in comparison to previous statistical relations, provides an effective means of efficiently recognizing the patterns in data and accurately predicting the shear wave velocity. The sensitivity analysis reveals that and fines content have significant influence on predicting V S .
doi_str_mv 10.1007/s13369-012-0525-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429896692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429896692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwA9g8sgRsx49kLBUUpAoqlcdoOe5N65LYxU5B_feklJnpDPd8VzofQpeUXFNC1E2ieS7LjFCWEcFEJo_QgNGSZpwV9BgNaE7LrCBMnKKzlNaESFqofID8fAUm4nfzBfgNmmBdt8PVDs9Cs_OhdabBT7CNv9F9h_iRsPELPAEPnbN41CxDdN2qTfjWJFjg4Ptb6MCuvLM9NQ-uwbMYNhA7B-kcndSmSXDxl0P0en_3Mn7Ips-Tx_Fomtmc0S5jhHAQTEmgRpWMCwaskqLmBESlKlMJQyy3inMlhORFJYD12wpWK04WiudDdHX4u4nhcwup061LFprGeAjbpClnZVFKWbK-Sg9VG0NKEWq9ia41cacp0Xu3-uBW92713q2WPcMOTOq7fglRr8M2-n7RP9APqYB8BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429896692</pqid></control><display><type>article</type><title>Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties</title><source>Springer Nature</source><creator>Mola-Abasi, H. ; Eslami, A. ; Shourijeh, P. Tabatabaie</creator><creatorcontrib>Mola-Abasi, H. ; Eslami, A. ; Shourijeh, P. Tabatabaie</creatorcontrib><description>Shear wave velocity ( V S ) is a basic engineering soil property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine V S indirectly by common in-situ tests, for instance the standard penetration test. In this paper, the relation between V S and geotechnical soil parameters such as standard penetration test blow counts (N 160 ), effective stress and fines content, as well as overburden stress ratio is investigated. A new polynomial model is proposed to correlate geotechnical parameters and V S , predicated on a total of 620 data sets, including field investigation records for the Kocaeli (Turkey, 1999) and Chi-Chi (Taiwan, 1999) earthquakes. This study addresses the question of whether group method of data handling (GMDH) type neural networks (NN) optimized using genetic algorithms could be used to (1) estimate V S based on specified geotechnical variables, (2) assess the influence of each variable on V S . Results suggest that GMDH-type NN, in comparison to previous statistical relations, provides an effective means of efficiently recognizing the patterns in data and accurately predicting the shear wave velocity. The sensitivity analysis reveals that and fines content have significant influence on predicting V S .</description><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-012-0525-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Engineering ; Genetic algorithms ; Geotechnics ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Neural networks ; Polynomials ; Research Article - Civil Engineering ; Science ; Soil (material) ; Turkey</subject><ispartof>Arabian Journal for Science and Engineering, 2013-04, Vol.38 (4), p.829-838</ispartof><rights>King Fahd University of Petroleum and Minerals 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743</citedby><cites>FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mola-Abasi, H.</creatorcontrib><creatorcontrib>Eslami, A.</creatorcontrib><creatorcontrib>Shourijeh, P. Tabatabaie</creatorcontrib><title>Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties</title><title>Arabian Journal for Science and Engineering</title><addtitle>Arab J Sci Eng</addtitle><description>Shear wave velocity ( V S ) is a basic engineering soil property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine V S indirectly by common in-situ tests, for instance the standard penetration test. In this paper, the relation between V S and geotechnical soil parameters such as standard penetration test blow counts (N 160 ), effective stress and fines content, as well as overburden stress ratio is investigated. A new polynomial model is proposed to correlate geotechnical parameters and V S , predicated on a total of 620 data sets, including field investigation records for the Kocaeli (Turkey, 1999) and Chi-Chi (Taiwan, 1999) earthquakes. This study addresses the question of whether group method of data handling (GMDH) type neural networks (NN) optimized using genetic algorithms could be used to (1) estimate V S based on specified geotechnical variables, (2) assess the influence of each variable on V S . Results suggest that GMDH-type NN, in comparison to previous statistical relations, provides an effective means of efficiently recognizing the patterns in data and accurately predicting the shear wave velocity. The sensitivity analysis reveals that and fines content have significant influence on predicting V S .</description><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Geotechnics</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Research Article - Civil Engineering</subject><subject>Science</subject><subject>Soil (material)</subject><subject>Turkey</subject><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwA9g8sgRsx49kLBUUpAoqlcdoOe5N65LYxU5B_feklJnpDPd8VzofQpeUXFNC1E2ieS7LjFCWEcFEJo_QgNGSZpwV9BgNaE7LrCBMnKKzlNaESFqofID8fAUm4nfzBfgNmmBdt8PVDs9Cs_OhdabBT7CNv9F9h_iRsPELPAEPnbN41CxDdN2qTfjWJFjg4Ptb6MCuvLM9NQ-uwbMYNhA7B-kcndSmSXDxl0P0en_3Mn7Ips-Tx_Fomtmc0S5jhHAQTEmgRpWMCwaskqLmBESlKlMJQyy3inMlhORFJYD12wpWK04WiudDdHX4u4nhcwup061LFprGeAjbpClnZVFKWbK-Sg9VG0NKEWq9ia41cacp0Xu3-uBW92713q2WPcMOTOq7fglRr8M2-n7RP9APqYB8BQ</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Mola-Abasi, H.</creator><creator>Eslami, A.</creator><creator>Shourijeh, P. Tabatabaie</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130401</creationdate><title>Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties</title><author>Mola-Abasi, H. ; Eslami, A. ; Shourijeh, P. Tabatabaie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Geotechnics</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Research Article - Civil Engineering</topic><topic>Science</topic><topic>Soil (material)</topic><topic>Turkey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mola-Abasi, H.</creatorcontrib><creatorcontrib>Eslami, A.</creatorcontrib><creatorcontrib>Shourijeh, P. Tabatabaie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Arabian Journal for Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mola-Abasi, H.</au><au>Eslami, A.</au><au>Shourijeh, P. Tabatabaie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties</atitle><jtitle>Arabian Journal for Science and Engineering</jtitle><stitle>Arab J Sci Eng</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>38</volume><issue>4</issue><spage>829</spage><epage>838</epage><pages>829-838</pages><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Shear wave velocity ( V S ) is a basic engineering soil property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine V S indirectly by common in-situ tests, for instance the standard penetration test. In this paper, the relation between V S and geotechnical soil parameters such as standard penetration test blow counts (N 160 ), effective stress and fines content, as well as overburden stress ratio is investigated. A new polynomial model is proposed to correlate geotechnical parameters and V S , predicated on a total of 620 data sets, including field investigation records for the Kocaeli (Turkey, 1999) and Chi-Chi (Taiwan, 1999) earthquakes. This study addresses the question of whether group method of data handling (GMDH) type neural networks (NN) optimized using genetic algorithms could be used to (1) estimate V S based on specified geotechnical variables, (2) assess the influence of each variable on V S . Results suggest that GMDH-type NN, in comparison to previous statistical relations, provides an effective means of efficiently recognizing the patterns in data and accurately predicting the shear wave velocity. The sensitivity analysis reveals that and fines content have significant influence on predicting V S .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s13369-012-0525-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1319-8025
ispartof Arabian Journal for Science and Engineering, 2013-04, Vol.38 (4), p.829-838
issn 1319-8025
2191-4281
language eng
recordid cdi_proquest_miscellaneous_1429896692
source Springer Nature
subjects Engineering
Genetic algorithms
Geotechnics
Humanities and Social Sciences
Mathematical models
multidisciplinary
Neural networks
Polynomials
Research Article - Civil Engineering
Science
Soil (material)
Turkey
title Shear Wave Velocity by Polynomial Neural Networks and Genetic Algorithms Based on Geotechnical Soil Properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20Wave%20Velocity%20by%20Polynomial%20Neural%20Networks%20and%20Genetic%20Algorithms%20Based%20on%20Geotechnical%20Soil%20Properties&rft.jtitle=Arabian%20Journal%20for%20Science%20and%20Engineering&rft.au=Mola-Abasi,%20H.&rft.date=2013-04-01&rft.volume=38&rft.issue=4&rft.spage=829&rft.epage=838&rft.pages=829-838&rft.issn=1319-8025&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-012-0525-6&rft_dat=%3Cproquest_cross%3E1429896692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-2004e5276e1a792452e2b65f40e5b7bab5a0c4c744755648b5e202582f740d743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429896692&rft_id=info:pmid/&rfr_iscdi=true