Loading…
Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model
By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number...
Saved in:
Published in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3 |
container_end_page | 605 |
container_issue | 3 |
container_start_page | 593 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 44 |
creator | Spitans, Sergejs Jakovics, Andris Baake, Egbert Nacke, Bernard |
description | By means of
ANSYS Classic
and
ANSYS CFX
external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow. |
doi_str_mv | 10.1007/s11663-013-9809-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429896872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429896872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</originalsourceid><addsrcrecordid>eNp1kV1rHCEUhofSQtO0P6B3Qin0ZhKPjuPau5Bk24V8FPpxK65zXAyOs1XnIr-hf7pON4QSyJXiec77nuPbNO-BngCl8jQD9D1vKfBWrahq1YvmCETHW1DQv6x3KnkrehCvmzc531FKe6X4UfPnZh4xeWsCuZ4GDD7uyOTIOiGS73NyxiK5uI9m9DYvhWsMhfhITCRnoWCKpiC5DGhLmkazi1i8JWuPYfhMvplUyOaEbMZ9wBFjMcVPS-tAflVPV13_PSyyi_fb5pUzIeO7h_O4-bm-_HH-tb26_bI5P7tqLZeqtL3DbccEdEZJZbZ8y5gYlOMStk72jloDzDFQbEDBxbAaqGTCCiOUMkz0yI-bTwfdfZp-z5iLHn22GIKJOM1ZQ8fUSvUrySr64Ql6N8116VApLiSAlMArBQfKpinnhE7vkx9NutdA9RKPPsSjazx6iUer2vPxQdnk-vsumWh9fmxksqOyg2UCduByLcUdpv8meFb8L3L-nyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357117713</pqid></control><display><type>article</type><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><source>Springer Link</source><creator>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</creator><creatorcontrib>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</creatorcontrib><description>By means of
ANSYS Classic
and
ANSYS CFX
external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-013-9809-9</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dynamic tests ; Dynamics ; Electric induction furnaces ; Exact sciences and technology ; Fluid flow ; Materials Science ; Mathematical models ; Melting ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Numerical analysis ; Production of metals ; Structural Materials ; Surface chemistry ; Surfaces and Interfaces ; Thin Films ; Three dimensional ; Turbulence models ; Turbulent flow</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</citedby><cites>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27407412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spitans, Sergejs</creatorcontrib><creatorcontrib>Jakovics, Andris</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Nacke, Bernard</creatorcontrib><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>By means of
ANSYS Classic
and
ANSYS CFX
external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electric induction furnaces</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Production of metals</subject><subject>Structural Materials</subject><subject>Surface chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Three dimensional</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rHCEUhofSQtO0P6B3Qin0ZhKPjuPau5Bk24V8FPpxK65zXAyOs1XnIr-hf7pON4QSyJXiec77nuPbNO-BngCl8jQD9D1vKfBWrahq1YvmCETHW1DQv6x3KnkrehCvmzc531FKe6X4UfPnZh4xeWsCuZ4GDD7uyOTIOiGS73NyxiK5uI9m9DYvhWsMhfhITCRnoWCKpiC5DGhLmkazi1i8JWuPYfhMvplUyOaEbMZ9wBFjMcVPS-tAflVPV13_PSyyi_fb5pUzIeO7h_O4-bm-_HH-tb26_bI5P7tqLZeqtL3DbccEdEZJZbZ8y5gYlOMStk72jloDzDFQbEDBxbAaqGTCCiOUMkz0yI-bTwfdfZp-z5iLHn22GIKJOM1ZQ8fUSvUrySr64Ql6N8116VApLiSAlMArBQfKpinnhE7vkx9NutdA9RKPPsSjazx6iUer2vPxQdnk-vsumWh9fmxksqOyg2UCduByLcUdpv8meFb8L3L-nyI</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Spitans, Sergejs</creator><creator>Jakovics, Andris</creator><creator>Baake, Egbert</creator><creator>Nacke, Bernard</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130601</creationdate><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><author>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electric induction furnaces</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Production of metals</topic><topic>Structural Materials</topic><topic>Surface chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Three dimensional</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spitans, Sergejs</creatorcontrib><creatorcontrib>Jakovics, Andris</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Nacke, Bernard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spitans, Sergejs</au><au>Jakovics, Andris</au><au>Baake, Egbert</au><au>Nacke, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>44</volume><issue>3</issue><spage>593</spage><epage>605</epage><pages>593-605</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>By means of
ANSYS Classic
and
ANSYS CFX
external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-013-9809-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429896872 |
source | Springer Link |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Dynamic tests Dynamics Electric induction furnaces Exact sciences and technology Fluid flow Materials Science Mathematical models Melting Metallic Materials Metals. Metallurgy Nanotechnology Numerical analysis Production of metals Structural Materials Surface chemistry Surfaces and Interfaces Thin Films Three dimensional Turbulence models Turbulent flow |
title | Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Free%20Surface%20Dynamics%20of%20Melt%20in%20an%20Alternate%20Electromagnetic%20Field:%20Part%20I.%20Implementation%20and%20Verification%20of%20Model&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Spitans,%20Sergejs&rft.date=2013-06-01&rft.volume=44&rft.issue=3&rft.spage=593&rft.epage=605&rft.pages=593-605&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-013-9809-9&rft_dat=%3Cproquest_cross%3E1429896872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1357117713&rft_id=info:pmid/&rfr_iscdi=true |