Loading…

Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model

By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605
Main Authors: Spitans, Sergejs, Jakovics, Andris, Baake, Egbert, Nacke, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3
cites cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3
container_end_page 605
container_issue 3
container_start_page 593
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 44
creator Spitans, Sergejs
Jakovics, Andris
Baake, Egbert
Nacke, Bernard
description By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.
doi_str_mv 10.1007/s11663-013-9809-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429896872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429896872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</originalsourceid><addsrcrecordid>eNp1kV1rHCEUhofSQtO0P6B3Qin0ZhKPjuPau5Bk24V8FPpxK65zXAyOs1XnIr-hf7pON4QSyJXiec77nuPbNO-BngCl8jQD9D1vKfBWrahq1YvmCETHW1DQv6x3KnkrehCvmzc531FKe6X4UfPnZh4xeWsCuZ4GDD7uyOTIOiGS73NyxiK5uI9m9DYvhWsMhfhITCRnoWCKpiC5DGhLmkazi1i8JWuPYfhMvplUyOaEbMZ9wBFjMcVPS-tAflVPV13_PSyyi_fb5pUzIeO7h_O4-bm-_HH-tb26_bI5P7tqLZeqtL3DbccEdEZJZbZ8y5gYlOMStk72jloDzDFQbEDBxbAaqGTCCiOUMkz0yI-bTwfdfZp-z5iLHn22GIKJOM1ZQ8fUSvUrySr64Ql6N8116VApLiSAlMArBQfKpinnhE7vkx9NutdA9RKPPsSjazx6iUer2vPxQdnk-vsumWh9fmxksqOyg2UCduByLcUdpv8meFb8L3L-nyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357117713</pqid></control><display><type>article</type><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><source>Springer Link</source><creator>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</creator><creatorcontrib>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</creatorcontrib><description>By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-013-9809-9</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dynamic tests ; Dynamics ; Electric induction furnaces ; Exact sciences and technology ; Fluid flow ; Materials Science ; Mathematical models ; Melting ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Numerical analysis ; Production of metals ; Structural Materials ; Surface chemistry ; Surfaces and Interfaces ; Thin Films ; Three dimensional ; Turbulence models ; Turbulent flow</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</citedby><cites>FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27407412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spitans, Sergejs</creatorcontrib><creatorcontrib>Jakovics, Andris</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Nacke, Bernard</creatorcontrib><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electric induction furnaces</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Production of metals</subject><subject>Structural Materials</subject><subject>Surface chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Three dimensional</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rHCEUhofSQtO0P6B3Qin0ZhKPjuPau5Bk24V8FPpxK65zXAyOs1XnIr-hf7pON4QSyJXiec77nuPbNO-BngCl8jQD9D1vKfBWrahq1YvmCETHW1DQv6x3KnkrehCvmzc531FKe6X4UfPnZh4xeWsCuZ4GDD7uyOTIOiGS73NyxiK5uI9m9DYvhWsMhfhITCRnoWCKpiC5DGhLmkazi1i8JWuPYfhMvplUyOaEbMZ9wBFjMcVPS-tAflVPV13_PSyyi_fb5pUzIeO7h_O4-bm-_HH-tb26_bI5P7tqLZeqtL3DbccEdEZJZbZ8y5gYlOMStk72jloDzDFQbEDBxbAaqGTCCiOUMkz0yI-bTwfdfZp-z5iLHn22GIKJOM1ZQ8fUSvUrySr64Ql6N8116VApLiSAlMArBQfKpinnhE7vkx9NutdA9RKPPsSjazx6iUer2vPxQdnk-vsumWh9fmxksqOyg2UCduByLcUdpv8meFb8L3L-nyI</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Spitans, Sergejs</creator><creator>Jakovics, Andris</creator><creator>Baake, Egbert</creator><creator>Nacke, Bernard</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130601</creationdate><title>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</title><author>Spitans, Sergejs ; Jakovics, Andris ; Baake, Egbert ; Nacke, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electric induction furnaces</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Production of metals</topic><topic>Structural Materials</topic><topic>Surface chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Three dimensional</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spitans, Sergejs</creatorcontrib><creatorcontrib>Jakovics, Andris</creatorcontrib><creatorcontrib>Baake, Egbert</creatorcontrib><creatorcontrib>Nacke, Bernard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spitans, Sergejs</au><au>Jakovics, Andris</au><au>Baake, Egbert</au><au>Nacke, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>44</volume><issue>3</issue><spage>593</spage><epage>605</epage><pages>593-605</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-013-9809-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2013-06, Vol.44 (3), p.593-605
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_miscellaneous_1429896872
source Springer Link
subjects Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dynamic tests
Dynamics
Electric induction furnaces
Exact sciences and technology
Fluid flow
Materials Science
Mathematical models
Melting
Metallic Materials
Metals. Metallurgy
Nanotechnology
Numerical analysis
Production of metals
Structural Materials
Surface chemistry
Surfaces and Interfaces
Thin Films
Three dimensional
Turbulence models
Turbulent flow
title Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Free%20Surface%20Dynamics%20of%20Melt%20in%20an%20Alternate%20Electromagnetic%20Field:%20Part%20I.%20Implementation%20and%20Verification%20of%20Model&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Spitans,%20Sergejs&rft.date=2013-06-01&rft.volume=44&rft.issue=3&rft.spage=593&rft.epage=605&rft.pages=593-605&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-013-9809-9&rft_dat=%3Cproquest_cross%3E1429896872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-6feb42514a979ab3b225d9f371bf76f0ca12f2192de535d8d0725c5a599a256e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1357117713&rft_id=info:pmid/&rfr_iscdi=true