Loading…

Monotone operator theory for unsteady problems in variable exponent spaces

We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations 2012-11, Vol.57 (11), p.1209-1231
Main Authors: Diening, L., Nägele, P., Růžička, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3
cites cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3
container_end_page 1231
container_issue 11
container_start_page 1209
container_title Complex variables and elliptic equations
container_volume 57
creator Diening, L.
Nägele, P.
Růžička, M.
description We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 
doi_str_mv 10.1080/17476933.2011.557157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429905982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814239281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AxcFN2465iZp06xEBp-MuNF1SNMEO7RJTVq1_94MVRcu5C7ug3MOly9JTgGtAJXoAhhlBSdkhRHAKs8Z5GwvWezOWcEp7P_OhBwmRyFsEaI5LdAieXh01g3O6tT12svB-XR41c5PqYnjaMOgZT2lvXdVq7uQNjZ9l76RcUv1Zx-NdkhDL5UOx8mBkW3QJ999mbzcXD-v77LN0-39-mqTKVKUQ1ZXDHEGiGMpTVnTyvAS6hwrxpEqNYNCV0gzWnFDoMJg6rrCSmHMDCloacgyOZ9z41Nvow6D6JqgdNtKq90YBFDMOcp5iaP07I9060Zv43cCIAcai0NU0VmlvAvBayN633TSTwKQ2AEWP4DFDrCYAUfb5WxrbGTVyQ_n21oMcmqdN15a1QRB_k34AkINggw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151414191</pqid></control><display><type>article</type><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><source>Taylor and Francis Science and Technology Collection</source><creator>Diening, L. ; Nägele, P. ; Růžička, M.</creator><creatorcontrib>Diening, L. ; Nägele, P. ; Růžička, M.</creatorcontrib><description>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 &lt; p −  ≤ p +  &lt; ∞.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476933.2011.557157</identifier><language>eng</language><publisher>Colchester: Taylor &amp; Francis Group</publisher><subject>Complex variables ; Density ; Exponents ; Function space ; Mathematical analysis ; monotone operator ; Operators ; Theory ; Uniqueness ; Unsteady ; variable exponent spaces</subject><ispartof>Complex variables and elliptic equations, 2012-11, Vol.57 (11), p.1209-1231</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</citedby><cites>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Diening, L.</creatorcontrib><creatorcontrib>Nägele, P.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><title>Complex variables and elliptic equations</title><description>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 &lt; p −  ≤ p +  &lt; ∞.</description><subject>Complex variables</subject><subject>Density</subject><subject>Exponents</subject><subject>Function space</subject><subject>Mathematical analysis</subject><subject>monotone operator</subject><subject>Operators</subject><subject>Theory</subject><subject>Uniqueness</subject><subject>Unsteady</subject><subject>variable exponent spaces</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AxcFN2465iZp06xEBp-MuNF1SNMEO7RJTVq1_94MVRcu5C7ug3MOly9JTgGtAJXoAhhlBSdkhRHAKs8Z5GwvWezOWcEp7P_OhBwmRyFsEaI5LdAieXh01g3O6tT12svB-XR41c5PqYnjaMOgZT2lvXdVq7uQNjZ9l76RcUv1Zx-NdkhDL5UOx8mBkW3QJ999mbzcXD-v77LN0-39-mqTKVKUQ1ZXDHEGiGMpTVnTyvAS6hwrxpEqNYNCV0gzWnFDoMJg6rrCSmHMDCloacgyOZ9z41Nvow6D6JqgdNtKq90YBFDMOcp5iaP07I9060Zv43cCIAcai0NU0VmlvAvBayN633TSTwKQ2AEWP4DFDrCYAUfb5WxrbGTVyQ_n21oMcmqdN15a1QRB_k34AkINggw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Diening, L.</creator><creator>Nägele, P.</creator><creator>Růžička, M.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><author>Diening, L. ; Nägele, P. ; Růžička, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complex variables</topic><topic>Density</topic><topic>Exponents</topic><topic>Function space</topic><topic>Mathematical analysis</topic><topic>monotone operator</topic><topic>Operators</topic><topic>Theory</topic><topic>Uniqueness</topic><topic>Unsteady</topic><topic>variable exponent spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diening, L.</creatorcontrib><creatorcontrib>Nägele, P.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diening, L.</au><au>Nägele, P.</au><au>Růžička, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone operator theory for unsteady problems in variable exponent spaces</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2012-11</date><risdate>2012</risdate><volume>57</volume><issue>11</issue><spage>1209</spage><epage>1231</epage><pages>1209-1231</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 &lt; p −  ≤ p +  &lt; ∞.</abstract><cop>Colchester</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/17476933.2011.557157</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1747-6933
ispartof Complex variables and elliptic equations, 2012-11, Vol.57 (11), p.1209-1231
issn 1747-6933
1747-6941
language eng
recordid cdi_proquest_miscellaneous_1429905982
source Taylor and Francis Science and Technology Collection
subjects Complex variables
Density
Exponents
Function space
Mathematical analysis
monotone operator
Operators
Theory
Uniqueness
Unsteady
variable exponent spaces
title Monotone operator theory for unsteady problems in variable exponent spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20operator%20theory%20for%20unsteady%20problems%20in%20variable%20exponent%20spaces&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Diening,%20L.&rft.date=2012-11&rft.volume=57&rft.issue=11&rft.spage=1209&rft.epage=1231&rft.pages=1209-1231&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476933.2011.557157&rft_dat=%3Cproquest_cross%3E2814239281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151414191&rft_id=info:pmid/&rfr_iscdi=true