Loading…
Monotone operator theory for unsteady problems in variable exponent spaces
We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L 2 -continuity of...
Saved in:
Published in: | Complex variables and elliptic equations 2012-11, Vol.57 (11), p.1209-1231 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3 |
container_end_page | 1231 |
container_issue | 11 |
container_start_page | 1209 |
container_title | Complex variables and elliptic equations |
container_volume | 57 |
creator | Diening, L. Nägele, P. Růžička, M. |
description | We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L
2
-continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 |
doi_str_mv | 10.1080/17476933.2011.557157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429905982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814239281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AxcFN2465iZp06xEBp-MuNF1SNMEO7RJTVq1_94MVRcu5C7ug3MOly9JTgGtAJXoAhhlBSdkhRHAKs8Z5GwvWezOWcEp7P_OhBwmRyFsEaI5LdAieXh01g3O6tT12svB-XR41c5PqYnjaMOgZT2lvXdVq7uQNjZ9l76RcUv1Zx-NdkhDL5UOx8mBkW3QJ999mbzcXD-v77LN0-39-mqTKVKUQ1ZXDHEGiGMpTVnTyvAS6hwrxpEqNYNCV0gzWnFDoMJg6rrCSmHMDCloacgyOZ9z41Nvow6D6JqgdNtKq90YBFDMOcp5iaP07I9060Zv43cCIAcai0NU0VmlvAvBayN633TSTwKQ2AEWP4DFDrCYAUfb5WxrbGTVyQ_n21oMcmqdN15a1QRB_k34AkINggw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151414191</pqid></control><display><type>article</type><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><source>Taylor and Francis Science and Technology Collection</source><creator>Diening, L. ; Nägele, P. ; Růžička, M.</creator><creatorcontrib>Diening, L. ; Nägele, P. ; Růžička, M.</creatorcontrib><description>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L
2
-continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 < p
−
≤ p
+
< ∞.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476933.2011.557157</identifier><language>eng</language><publisher>Colchester: Taylor & Francis Group</publisher><subject>Complex variables ; Density ; Exponents ; Function space ; Mathematical analysis ; monotone operator ; Operators ; Theory ; Uniqueness ; Unsteady ; variable exponent spaces</subject><ispartof>Complex variables and elliptic equations, 2012-11, Vol.57 (11), p.1209-1231</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</citedby><cites>FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Diening, L.</creatorcontrib><creatorcontrib>Nägele, P.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><title>Complex variables and elliptic equations</title><description>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L
2
-continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 < p
−
≤ p
+
< ∞.</description><subject>Complex variables</subject><subject>Density</subject><subject>Exponents</subject><subject>Function space</subject><subject>Mathematical analysis</subject><subject>monotone operator</subject><subject>Operators</subject><subject>Theory</subject><subject>Uniqueness</subject><subject>Unsteady</subject><subject>variable exponent spaces</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYsoOI7-AxcFN2465iZp06xEBp-MuNF1SNMEO7RJTVq1_94MVRcu5C7ug3MOly9JTgGtAJXoAhhlBSdkhRHAKs8Z5GwvWezOWcEp7P_OhBwmRyFsEaI5LdAieXh01g3O6tT12svB-XR41c5PqYnjaMOgZT2lvXdVq7uQNjZ9l76RcUv1Zx-NdkhDL5UOx8mBkW3QJ999mbzcXD-v77LN0-39-mqTKVKUQ1ZXDHEGiGMpTVnTyvAS6hwrxpEqNYNCV0gzWnFDoMJg6rrCSmHMDCloacgyOZ9z41Nvow6D6JqgdNtKq90YBFDMOcp5iaP07I9060Zv43cCIAcai0NU0VmlvAvBayN633TSTwKQ2AEWP4DFDrCYAUfb5WxrbGTVyQ_n21oMcmqdN15a1QRB_k34AkINggw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Diening, L.</creator><creator>Nägele, P.</creator><creator>Růžička, M.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Monotone operator theory for unsteady problems in variable exponent spaces</title><author>Diening, L. ; Nägele, P. ; Růžička, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complex variables</topic><topic>Density</topic><topic>Exponents</topic><topic>Function space</topic><topic>Mathematical analysis</topic><topic>monotone operator</topic><topic>Operators</topic><topic>Theory</topic><topic>Uniqueness</topic><topic>Unsteady</topic><topic>variable exponent spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diening, L.</creatorcontrib><creatorcontrib>Nägele, P.</creatorcontrib><creatorcontrib>Růžička, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diening, L.</au><au>Nägele, P.</au><au>Růžička, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone operator theory for unsteady problems in variable exponent spaces</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2012-11</date><risdate>2012</risdate><volume>57</volume><issue>11</issue><spage>1209</spage><epage>1231</epage><pages>1209-1231</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>We introduce function spaces for the treatment of parabolic equations with variable exponents by means of the theory of monotone operators. We generalize classical results such as density of smooth functions and a formula for integration by parts to prove existence, uniqueness and L
2
-continuity of weak solutions to parabolic equations involving elliptic operators A with p(τ, x)-structure, where p is a globally log-Hölder continuous variable exponent satisfying 1 < p
−
≤ p
+
< ∞.</abstract><cop>Colchester</cop><pub>Taylor & Francis Group</pub><doi>10.1080/17476933.2011.557157</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6933 |
ispartof | Complex variables and elliptic equations, 2012-11, Vol.57 (11), p.1209-1231 |
issn | 1747-6933 1747-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429905982 |
source | Taylor and Francis Science and Technology Collection |
subjects | Complex variables Density Exponents Function space Mathematical analysis monotone operator Operators Theory Uniqueness Unsteady variable exponent spaces |
title | Monotone operator theory for unsteady problems in variable exponent spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20operator%20theory%20for%20unsteady%20problems%20in%20variable%20exponent%20spaces&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Diening,%20L.&rft.date=2012-11&rft.volume=57&rft.issue=11&rft.spage=1209&rft.epage=1231&rft.pages=1209-1231&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476933.2011.557157&rft_dat=%3Cproquest_cross%3E2814239281%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-db70971092aaf8d4bf981d52c790c8e716eb0e74b9f31b21fddb2cc227f3648f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1151414191&rft_id=info:pmid/&rfr_iscdi=true |