Loading…

Interleukin-6 Mediates Angiotensinogen Gene Expression during Liver Regeneration. e67868

Background Angiotensinogen is the precursor of angiotensin II, which is associated with ischemia-reperfusion injury. Angiotensin II reduces liver regeneration after hepatectomy and causes dysfunction and failure of reduced-size liver transplants. However, the regulation of angiotensinogen during liv...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-07, Vol.8 (7)
Main Authors: Lai, Hong-Shiee, Lin, Wen-Hsi, Lai, Shuo-Lun, Lin, Hao-Yu, Hsu, Wen-Ming, Chou, Chia-Hung, Lee, Po-Huang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Angiotensinogen is the precursor of angiotensin II, which is associated with ischemia-reperfusion injury. Angiotensin II reduces liver regeneration after hepatectomy and causes dysfunction and failure of reduced-size liver transplants. However, the regulation of angiotensinogen during liver regeneration is still unclear. Aims To investigate the regulation of angiotensinogen during liver regeneration for preventing angiotensin II-related ischemia-reperfusion injury during liver regeneration. Methods A mouse in vitro partial hepatectomy animal model was used to evaluate the expression of interleukin-6 (IL-6) and angiotensinogen during liver regeneration. Serum IL-6 and angiotensinogen were detected by enzyme immunoassay (EIA). Angiotensinogen mRNA was detected by RT-PCR. Tissue levels of angiotensinogen protein were detected by Western blot analysis. Primary cultures of mouse hepatocytes were used to investigate IL-6-induced angiotensinogen. Chemical inhibitors were used to perturb signal transduction pathways. Synthetic double-stranded oligodeoxynucleotides (ODNs) were used as 'decoy' cis-elements to investigate transcription. Ki 67 staining and quantification were used to verify liver regeneration. Results In the in vivo model, the levels of serum IL-6 and angiotensinogen correlated. In the in vitro model, IL-6 transcriptionally regulated angiotensinogen expression. Additionally, IL-6 mediated angiotensinogen expression through the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) and JAK/p38 signaling. Decoy ODN analyses revealed that STAT3 and nuclear factor-kB (NF-kB) also played critical roles in the transcriptional regulation of angiotensinogen by IL-6. IL-6-mediated signaling, JAK2, STAT3 and p38 inhibitors reduced angiotensinogen expression in the partially hepatectomized mice. Conclusion During liver regeneration, IL-6-enhanced angiotensinogen expression is dependent on the JAK/STAT3 and JAK/p38/NF-kB signaling pathways. Interruption of the molecular mechanisms of angiotensinogen regulation may be applied as the basis of therapeutic strategies for preventing angiotensin II-related ischemia-reperfusion injury during liver regeneration.
ISSN:1932-6203
DOI:10.1371/journal.pone.0067868