Loading…

Global stability analysis of multitime-scale neural networks

Global asymptotic stability problem is studied for a class of recurrent neural networks with multitime scale. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory, which leads to the difficulty to the dynamics analysis, especially for the case of multiple t...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2013-02, Vol.22 (2), p.211-217
Main Authors: Wang, Zhanshan, Zhang, Enlin, Zhang, Huaguang, Ren, Zhengyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3
cites cdi_FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3
container_end_page 217
container_issue 2
container_start_page 211
container_title Neural computing & applications
container_volume 22
creator Wang, Zhanshan
Zhang, Enlin
Zhang, Huaguang
Ren, Zhengyun
description Global asymptotic stability problem is studied for a class of recurrent neural networks with multitime scale. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory, which leads to the difficulty to the dynamics analysis, especially for the case of multiple time varying delays. Some novel stability criteria are proposed on the basis of linear matrix inequality technique for the concerned neural network, which sufficiently consider the inhibitory actions in the different memories. From the viewpoint of biological information, the proposed results obviously improve the existing stability criteria. A numerical example is used to show the effectiveness of the obtained results.
doi_str_mv 10.1007/s00521-011-0680-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430861971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1430861971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOH40diQVV0CJVYoHZstMrSnGS4kuE-u9xFWaGVzfc8550D2O3Au4FgHkggIUUHEROaYFXZ2wmtFJcwcKesxlU-rTR6pJdEe0BQJd2MWOPq9gHHwsafGhiMxwL3_l4pIaKfle0YxyaoWmRU-0jFh2OKcMdDj99-qJrdrHzkfDmb87Zx8vz-3LNN2-r1-XThtdKioEHr7cGQBrpTa1lhUZaLO1WoLGlrkoMGn2pap2zDd74KmgZglA6v5Y5NWd3091D6r9HpMG1DdUYo--wH8nlR8GWojIio2JC69QTJdy5Q2pan45OgDuZcpMpl025kylX5Y6cOpTZ7hOT2_djyhron9IvYxBrHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430861971</pqid></control><display><type>article</type><title>Global stability analysis of multitime-scale neural networks</title><source>Springer Nature</source><creator>Wang, Zhanshan ; Zhang, Enlin ; Zhang, Huaguang ; Ren, Zhengyun</creator><creatorcontrib>Wang, Zhanshan ; Zhang, Enlin ; Zhang, Huaguang ; Ren, Zhengyun</creatorcontrib><description>Global asymptotic stability problem is studied for a class of recurrent neural networks with multitime scale. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory, which leads to the difficulty to the dynamics analysis, especially for the case of multiple time varying delays. Some novel stability criteria are proposed on the basis of linear matrix inequality technique for the concerned neural network, which sufficiently consider the inhibitory actions in the different memories. From the viewpoint of biological information, the proposed results obviously improve the existing stability criteria. A numerical example is used to show the effectiveness of the obtained results.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-011-0680-9</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Image Processing and Computer Vision ; Isnn 2011 ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2013-02, Vol.22 (2), p.211-217</ispartof><rights>Springer-Verlag London Limited 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3</citedby><cites>FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Zhanshan</creatorcontrib><creatorcontrib>Zhang, Enlin</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Ren, Zhengyun</creatorcontrib><title>Global stability analysis of multitime-scale neural networks</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Global asymptotic stability problem is studied for a class of recurrent neural networks with multitime scale. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory, which leads to the difficulty to the dynamics analysis, especially for the case of multiple time varying delays. Some novel stability criteria are proposed on the basis of linear matrix inequality technique for the concerned neural network, which sufficiently consider the inhibitory actions in the different memories. From the viewpoint of biological information, the proposed results obviously improve the existing stability criteria. A numerical example is used to show the effectiveness of the obtained results.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image Processing and Computer Vision</subject><subject>Isnn 2011</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOH40diQVV0CJVYoHZstMrSnGS4kuE-u9xFWaGVzfc8550D2O3Au4FgHkggIUUHEROaYFXZ2wmtFJcwcKesxlU-rTR6pJdEe0BQJd2MWOPq9gHHwsafGhiMxwL3_l4pIaKfle0YxyaoWmRU-0jFh2OKcMdDj99-qJrdrHzkfDmb87Zx8vz-3LNN2-r1-XThtdKioEHr7cGQBrpTa1lhUZaLO1WoLGlrkoMGn2pap2zDd74KmgZglA6v5Y5NWd3091D6r9HpMG1DdUYo--wH8nlR8GWojIio2JC69QTJdy5Q2pan45OgDuZcpMpl025kylX5Y6cOpTZ7hOT2_djyhron9IvYxBrHA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wang, Zhanshan</creator><creator>Zhang, Enlin</creator><creator>Zhang, Huaguang</creator><creator>Ren, Zhengyun</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130201</creationdate><title>Global stability analysis of multitime-scale neural networks</title><author>Wang, Zhanshan ; Zhang, Enlin ; Zhang, Huaguang ; Ren, Zhengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image Processing and Computer Vision</topic><topic>Isnn 2011</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhanshan</creatorcontrib><creatorcontrib>Zhang, Enlin</creatorcontrib><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Ren, Zhengyun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhanshan</au><au>Zhang, Enlin</au><au>Zhang, Huaguang</au><au>Ren, Zhengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global stability analysis of multitime-scale neural networks</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>211</spage><epage>217</epage><pages>211-217</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Global asymptotic stability problem is studied for a class of recurrent neural networks with multitime scale. The concerned network involves two coupling terms, i.e., long-term memory and short-term memory, which leads to the difficulty to the dynamics analysis, especially for the case of multiple time varying delays. Some novel stability criteria are proposed on the basis of linear matrix inequality technique for the concerned neural network, which sufficiently consider the inhibitory actions in the different memories. From the viewpoint of biological information, the proposed results obviously improve the existing stability criteria. A numerical example is used to show the effectiveness of the obtained results.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00521-011-0680-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2013-02, Vol.22 (2), p.211-217
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_miscellaneous_1430861971
source Springer Nature
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Isnn 2011
Probability and Statistics in Computer Science
title Global stability analysis of multitime-scale neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20stability%20analysis%20of%20multitime-scale%20neural%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Zhanshan&rft.date=2013-02-01&rft.volume=22&rft.issue=2&rft.spage=211&rft.epage=217&rft.pages=211-217&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-011-0680-9&rft_dat=%3Cproquest_cross%3E1430861971%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-ba4d700272a7c429e728e68d1e786496eb4ea63c463cdba7a9b42bb13410068d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1430861971&rft_id=info:pmid/&rfr_iscdi=true