Loading…

Steric Hindrance of Photoswitching in Self-Assembled Monolayers of Azobenzene and Alkane Thiols

Surface-bound azobenzenes exhibit reversible photoswitching via trans–cis photoisomerization and have been proposed for a variety of applications such as photowritable optical media, liquid crystal displays, molecular electronics, and smart wetting surfaces. We report a novel synthetic route using s...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2013-09, Vol.29 (37), p.11623-11631
Main Authors: Valley, David T, Onstott, Matthew, Malyk, Sergey, Benderskii, Alexander V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface-bound azobenzenes exhibit reversible photoswitching via trans–cis photoisomerization and have been proposed for a variety of applications such as photowritable optical media, liquid crystal displays, molecular electronics, and smart wetting surfaces. We report a novel synthetic route using simple protection chemistry to form azobenzene-functionalized SAMs on gold and present a mechanistic study of the molecular order, orientation, and conformation in these self-assembled monolayers (SAMs). We use vibrational sum-frequency generation (VSFG) to characterize their vibrational modes, molecular orientation, and photoisomerization kinetics. Trans–cis conformational change of azobenzene leads to the change in the orientation of the nitrile marker group detected by VSFG. Mixed SAMs of azobenzene and alkane thiols are used to investigate the steric hindrance effects. While 100% azobenzene SAMs do not exhibit photoisomerization due to tight packing, we observe reversible switching (>10 cycles) in mixed SAMs with only 34% and 50% of alkane thiol spacers.
ISSN:0743-7463
1520-5827
DOI:10.1021/la402144g