Loading…
A formally second-order cell centred scheme for convection-diffusion equations on general grids
SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second...
Saved in:
Published in: | International journal for numerical methods in fluids 2013-03, Vol.71 (7), p.873-890 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43 |
container_end_page | 890 |
container_issue | 7 |
container_start_page | 873 |
container_title | International journal for numerical methods in fluids |
container_volume | 71 |
creator | Piar, L. Babik, F. Herbin, R. Latché, J.-C. |
description | SUMMARY
We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley & Sons, Ltd.
We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. |
doi_str_mv | 10.1002/fld.3688 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434021626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881804591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMK3njTedL0I70c001lTISplyFLTmZn186kVffvTZkoCt7ki4eXk5eQUwoDChBdmFIPWMr5HulRyLMQWMr2SQ-ijIYR5PSQHDm3AoA84qxHxDAwtV3LstwGDlVd6bC2Gm2gsCz9UjUWdeDUM66xk4Enb6iaoq5CXRjTOn8K8LWV3ZML_GWJFVpZBktbaHdMDowsHZ587X3yML6aj67D6d3kZjSchopRxkOKHPIEE53lKo1NrLXkuVFMUmVYpFKNnCXKgGFcLniSJ4otNGgKmYGEyZj1yfkud2Pr1xZdI9aF6_4gK6xbJ2jMYohoGqWenv2hq7q1lZ9OUN9J6gM5_AQqWztn0YiNLdbSbgUF0TUtfNOia9rTcEffixK3_zoxnl7-9oVr8OPbS_si0oxliXiaTQS_Hz2OZvRWzNknDTGO0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283605380</pqid></control><display><type>article</type><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</creator><creatorcontrib>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</creatorcontrib><description>SUMMARY
We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley & Sons, Ltd.
We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.3688</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Approximation ; convection dominant regime ; Convection-diffusion equation ; convergence analysis ; Diffusion ; discrete maximum principle ; finite volumes ; Fluxes ; Mathematical analysis ; Mathematical models ; Maximum principle ; MUSCL method ; Reconstruction</subject><ispartof>International journal for numerical methods in fluids, 2013-03, Vol.71 (7), p.873-890</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</citedby><cites>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piar, L.</creatorcontrib><creatorcontrib>Babik, F.</creatorcontrib><creatorcontrib>Herbin, R.</creatorcontrib><creatorcontrib>Latché, J.-C.</creatorcontrib><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY
We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley & Sons, Ltd.
We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</description><subject>Approximation</subject><subject>convection dominant regime</subject><subject>Convection-diffusion equation</subject><subject>convergence analysis</subject><subject>Diffusion</subject><subject>discrete maximum principle</subject><subject>finite volumes</subject><subject>Fluxes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum principle</subject><subject>MUSCL method</subject><subject>Reconstruction</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMK3njTedL0I70c001lTISplyFLTmZn186kVffvTZkoCt7ki4eXk5eQUwoDChBdmFIPWMr5HulRyLMQWMr2SQ-ijIYR5PSQHDm3AoA84qxHxDAwtV3LstwGDlVd6bC2Gm2gsCz9UjUWdeDUM66xk4Enb6iaoq5CXRjTOn8K8LWV3ZML_GWJFVpZBktbaHdMDowsHZ587X3yML6aj67D6d3kZjSchopRxkOKHPIEE53lKo1NrLXkuVFMUmVYpFKNnCXKgGFcLniSJ4otNGgKmYGEyZj1yfkud2Pr1xZdI9aF6_4gK6xbJ2jMYohoGqWenv2hq7q1lZ9OUN9J6gM5_AQqWztn0YiNLdbSbgUF0TUtfNOia9rTcEffixK3_zoxnl7-9oVr8OPbS_si0oxliXiaTQS_Hz2OZvRWzNknDTGO0Q</recordid><startdate>20130310</startdate><enddate>20130310</enddate><creator>Piar, L.</creator><creator>Babik, F.</creator><creator>Herbin, R.</creator><creator>Latché, J.-C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130310</creationdate><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><author>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>convection dominant regime</topic><topic>Convection-diffusion equation</topic><topic>convergence analysis</topic><topic>Diffusion</topic><topic>discrete maximum principle</topic><topic>finite volumes</topic><topic>Fluxes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum principle</topic><topic>MUSCL method</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piar, L.</creatorcontrib><creatorcontrib>Babik, F.</creatorcontrib><creatorcontrib>Herbin, R.</creatorcontrib><creatorcontrib>Latché, J.-C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piar, L.</au><au>Babik, F.</au><au>Herbin, R.</au><au>Latché, J.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A formally second-order cell centred scheme for convection-diffusion equations on general grids</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2013-03-10</date><risdate>2013</risdate><volume>71</volume><issue>7</issue><spage>873</spage><epage>890</epage><pages>873-890</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY
We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley & Sons, Ltd.
We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/fld.3688</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2013-03, Vol.71 (7), p.873-890 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434021626 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Approximation convection dominant regime Convection-diffusion equation convergence analysis Diffusion discrete maximum principle finite volumes Fluxes Mathematical analysis Mathematical models Maximum principle MUSCL method Reconstruction |
title | A formally second-order cell centred scheme for convection-diffusion equations on general grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20formally%20second-order%20cell%20centred%20scheme%20for%20convection-diffusion%20equations%20on%20general%20grids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Piar,%20L.&rft.date=2013-03-10&rft.volume=71&rft.issue=7&rft.spage=873&rft.epage=890&rft.pages=873-890&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.3688&rft_dat=%3Cproquest_cross%3E2881804591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283605380&rft_id=info:pmid/&rfr_iscdi=true |