Loading…

A formally second-order cell centred scheme for convection-diffusion equations on general grids

SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 2013-03, Vol.71 (7), p.873-890
Main Authors: Piar, L., Babik, F., Herbin, R., Latché, J.-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43
cites cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43
container_end_page 890
container_issue 7
container_start_page 873
container_title International journal for numerical methods in fluids
container_volume 71
creator Piar, L.
Babik, F.
Herbin, R.
Latché, J.-C.
description SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley & Sons, Ltd. We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.
doi_str_mv 10.1002/fld.3688
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434021626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881804591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p-BMK3njTedL0I70c001lTISplyFLTmZn186kVffvTZkoCt7ki4eXk5eQUwoDChBdmFIPWMr5HulRyLMQWMr2SQ-ijIYR5PSQHDm3AoA84qxHxDAwtV3LstwGDlVd6bC2Gm2gsCz9UjUWdeDUM66xk4Enb6iaoq5CXRjTOn8K8LWV3ZML_GWJFVpZBktbaHdMDowsHZ587X3yML6aj67D6d3kZjSchopRxkOKHPIEE53lKo1NrLXkuVFMUmVYpFKNnCXKgGFcLniSJ4otNGgKmYGEyZj1yfkud2Pr1xZdI9aF6_4gK6xbJ2jMYohoGqWenv2hq7q1lZ9OUN9J6gM5_AQqWztn0YiNLdbSbgUF0TUtfNOia9rTcEffixK3_zoxnl7-9oVr8OPbS_si0oxliXiaTQS_Hz2OZvRWzNknDTGO0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283605380</pqid></control><display><type>article</type><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</creator><creatorcontrib>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</creatorcontrib><description>SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley &amp; Sons, Ltd. We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.3688</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Approximation ; convection dominant regime ; Convection-diffusion equation ; convergence analysis ; Diffusion ; discrete maximum principle ; finite volumes ; Fluxes ; Mathematical analysis ; Mathematical models ; Maximum principle ; MUSCL method ; Reconstruction</subject><ispartof>International journal for numerical methods in fluids, 2013-03, Vol.71 (7), p.873-890</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</citedby><cites>FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piar, L.</creatorcontrib><creatorcontrib>Babik, F.</creatorcontrib><creatorcontrib>Herbin, R.</creatorcontrib><creatorcontrib>Latché, J.-C.</creatorcontrib><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley &amp; Sons, Ltd. We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</description><subject>Approximation</subject><subject>convection dominant regime</subject><subject>Convection-diffusion equation</subject><subject>convergence analysis</subject><subject>Diffusion</subject><subject>discrete maximum principle</subject><subject>finite volumes</subject><subject>Fluxes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum principle</subject><subject>MUSCL method</subject><subject>Reconstruction</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p-BMK3njTedL0I70c001lTISplyFLTmZn186kVffvTZkoCt7ki4eXk5eQUwoDChBdmFIPWMr5HulRyLMQWMr2SQ-ijIYR5PSQHDm3AoA84qxHxDAwtV3LstwGDlVd6bC2Gm2gsCz9UjUWdeDUM66xk4Enb6iaoq5CXRjTOn8K8LWV3ZML_GWJFVpZBktbaHdMDowsHZ587X3yML6aj67D6d3kZjSchopRxkOKHPIEE53lKo1NrLXkuVFMUmVYpFKNnCXKgGFcLniSJ4otNGgKmYGEyZj1yfkud2Pr1xZdI9aF6_4gK6xbJ2jMYohoGqWenv2hq7q1lZ9OUN9J6gM5_AQqWztn0YiNLdbSbgUF0TUtfNOia9rTcEffixK3_zoxnl7-9oVr8OPbS_si0oxliXiaTQS_Hz2OZvRWzNknDTGO0Q</recordid><startdate>20130310</startdate><enddate>20130310</enddate><creator>Piar, L.</creator><creator>Babik, F.</creator><creator>Herbin, R.</creator><creator>Latché, J.-C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130310</creationdate><title>A formally second-order cell centred scheme for convection-diffusion equations on general grids</title><author>Piar, L. ; Babik, F. ; Herbin, R. ; Latché, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>convection dominant regime</topic><topic>Convection-diffusion equation</topic><topic>convergence analysis</topic><topic>Diffusion</topic><topic>discrete maximum principle</topic><topic>finite volumes</topic><topic>Fluxes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum principle</topic><topic>MUSCL method</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piar, L.</creatorcontrib><creatorcontrib>Babik, F.</creatorcontrib><creatorcontrib>Herbin, R.</creatorcontrib><creatorcontrib>Latché, J.-C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piar, L.</au><au>Babik, F.</au><au>Herbin, R.</au><au>Latché, J.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A formally second-order cell centred scheme for convection-diffusion equations on general grids</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2013-03-10</date><risdate>2013</risdate><volume>71</volume><issue>7</issue><spage>873</spage><epage>890</epage><pages>873-890</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY We propose, in this paper, a finite volume scheme to compute the solution of the convection–diffusion equation on unstructured and possibly non‐conforming grids. The diffusive fluxes are approximated using the recently published SUSHI scheme in its cell centred version, that reaches a second‐order spatial convergence rate for the Laplace equation on any unstructured two‐dimensional/three‐dimensional grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied for pure convection problems. The limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension. Copyright © 2012 John Wiley &amp; Sons, Ltd. We propose a finite volume scheme to compute the solution of the convection‐diffusion equation. The diffusive fluxes are approximated using a recent cell‐centred scheme, working on unstructured and possibly non‐conforming grids. As in the MUSCL method, the numerical convective fluxes are built with a prediction‐limitation process, which ensures that the discrete maximum principle is satisfied; the limitation does not involve any geometrical reconstruction, thus allowing the use of completely general grids, in any space dimension.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/fld.3688</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2013-03, Vol.71 (7), p.873-890
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_1434021626
source Wiley-Blackwell Read & Publish Collection
subjects Approximation
convection dominant regime
Convection-diffusion equation
convergence analysis
Diffusion
discrete maximum principle
finite volumes
Fluxes
Mathematical analysis
Mathematical models
Maximum principle
MUSCL method
Reconstruction
title A formally second-order cell centred scheme for convection-diffusion equations on general grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20formally%20second-order%20cell%20centred%20scheme%20for%20convection-diffusion%20equations%20on%20general%20grids&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Piar,%20L.&rft.date=2013-03-10&rft.volume=71&rft.issue=7&rft.spage=873&rft.epage=890&rft.pages=873-890&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.3688&rft_dat=%3Cproquest_cross%3E2881804591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3138-1e8095e5d79c64f4dda89fc3a1cf32c6de835cf0f38ab8595c3bd0d107f053a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283605380&rft_id=info:pmid/&rfr_iscdi=true