Loading…

Pre-fire fuel reduction treatments influence plant communities and exotic species 9 years after a large wildfire

Questions: How did post-wildfire understorey plant community response, including exotic species response, differ between pre-fire treated areas that were less severely burned, and pre-fire untreated areas that were more severely burned? Were these differences consistent through time? Location: East-...

Full description

Saved in:
Bibliographic Details
Published in:Applied vegetation science 2013-07, Vol.16 (3), p.457-469
Main Authors: Shive, Kristen L., Kuenzi, Amanda M., Sieg, Carolyn H., Fulé, Peter Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Questions: How did post-wildfire understorey plant community response, including exotic species response, differ between pre-fire treated areas that were less severely burned, and pre-fire untreated areas that were more severely burned? Were these differences consistent through time? Location: East-central Arizona, southwestern US. Methods: We used a multi-year data set from the 2002 Rodeo–Chediski Fire to detect post-fire trends in plant community response in burned ponderosa pine forests. Within the burn perimeter, we examined the effects of pre-fire fuels treatments on post-fire vegetation by comparing paired treated and untreated sites on the Apache-Sitgreaves National Forest. We sampled these paired sites in 2004, 2005 and 2011. Results: There were significant differences in pre-fire treated and untreated plant communities by species composition and abundance in 2004 and 2005, but these communities were beginning to converge in 2011. Total understorey plant cover was significantly higher in untreated areas for all 3 yr. Plant cover generally increased between 2004 and 2005 and markedly decreased in 2011, with the exception of shrub cover, which steadily increased through time. The sharp decrease in forb and graminoid cover in 2011 is likely related to drought conditions since the fire. Annual/biennial forb and graminoid cover decreased relative to perennial cover through time, consistent with the initial floristics hypothesis. Exotic plant response was highly variable and not limited to the immediate post-fire, annual/biennial community. Despite low overall exotic forb and graminoid cover for all years (
ISSN:1402-2001
1654-109X
DOI:10.1111/avsc.12015