Loading…
Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions
Background and aims The biological restoration of saline habitats could be achieved by using halophyte plant species together with adapted arbuscular mycorrhizal fungi (AMF). An interesting plant to be used in restoration of saline environments, Asteriscus maritimus, is highly mycotrophic. The aim o...
Saved in:
Published in: | Plant and soil 2013-09, Vol.370 (1/2), p.175-185 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and aims The biological restoration of saline habitats could be achieved by using halophyte plant species together with adapted arbuscular mycorrhizal fungi (AMF). An interesting plant to be used in restoration of saline environments, Asteriscus maritimus, is highly mycotrophic. The aim of this study was to assess the effectiveness of native and allochthonous AMF to enhance the establishment and growth of the halophyte A. maritimus under saline conditions. Methods We studied the symbiotic effectiveness of four AMF strains (three native fungal isolates from a saline soil and one allochthonous, from collection) in A. maritimus subjected to increasing salinity stress. We measured plant physiological parameters by which AMF may ameliorate the detrimental effects of salinity stress. Results A. maritimus plants showed a high mycorrhizal dependency, even in absence of salt stress. Plants inoculated with native AMF had higher shoot dry weight, efficiency of photosystem II, stomatal conductance and accumulation of glutathione than those inoculated with the collection AMF at the highest level of salinity. Moreover, at this salt level, only 30 % of A. maritimus plants inoculated with the collection AMF survived, while with the three native AMF, the rate of survival was 100%. Conclusions Results points out the importance of native AMF inoculation in the establishment, survival and growth of A. maritimus plants. Inoculation with these native AMF enhanced A. maritimus salt tolerance by increasing efficiency of photosystem II, stomatal conductance and glutathione content and by reducing oxidative damage. Thus, the use of adequate native AMF inocula could be a critical issue for success in recovering saline degraded areas. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-013-1635-y |