Loading…

Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing

The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48h and subsequently alkali treated wheat straw was subje...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics sonochemistry 2014-01, Vol.21 (1), p.162-168
Main Authors: Badve, Mandar P., Gogate, Parag R., Pandit, Aniruddha B., Csoka, Levente
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10–15min increases the tensile index of the synthesized paper sheets to about 50–55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors.
ISSN:1350-4177
1873-2828
DOI:10.1016/j.ultsonch.2013.07.006