Loading…

Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns

A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a co...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2013-09, Vol.29 (38), p.11809-11814
Main Authors: Peng, Jiaxi, Zhao, Dan, Tang, Xiaofeng, Tong, Fei, Guan, Li, Wang, Yapei, Zhang, Meining, Cao, Tingbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93
cites cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93
container_end_page 11814
container_issue 38
container_start_page 11809
container_title Langmuir
container_volume 29
creator Peng, Jiaxi
Zhao, Dan
Tang, Xiaofeng
Tong, Fei
Guan, Li
Wang, Yapei
Zhang, Meining
Cao, Tingbing
description A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.
doi_str_mv 10.1021/la402953s
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437119725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437119725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgWgpDLwAyoIEQ8C3xPaIKgqViuhQ5ujEtYurNAbbQeLtCWppF3SGs3znoh-hS4LvCKbkvgGOqSpYPEJDUlCcF5KKYzTEgrNc8JIN0FmMa4yxYlydogHlmNGypEM0HXvfZC9OB699m0CnbB5cm1y7yhY-m0AdnIZkssW7CRsfTRtdcl9mO7IyTTaHlExo4zk6sdBEc7HrI_Q2eVyMn_PZ69N0_DDLgfEi5ZJIUWBV91WykmBrQNRKcC45KEFKQTWvGRcKLFBdKCy1BamUtUwsda3YCN1s934E_9mZmKqNi9o0DbTGd7EinAlClKBFT2-3tH81xmBs9RHcBsJ3RXD1m1y1T663V7u1Xb0xy738i6oH1zsAUUNjA7TaxYMTQsqCi4MDHau170Lbp_HPwR8uzYEB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437119725</pqid></control><display><type>article</type><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</creator><creatorcontrib>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</creatorcontrib><description>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la402953s</identifier><identifier>PMID: 24032662</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Applied sciences ; Dimethylpolysiloxanes - chemistry ; Exact sciences and technology ; Nylons - chemistry ; Organic polymers ; Photochemistry - methods ; Physicochemistry of polymers ; Polymers - chemistry ; Printing ; Properties and characterization ; Solution and gel properties</subject><ispartof>Langmuir, 2013-09, Vol.29 (38), p.11809-11814</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</citedby><cites>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27788547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24032662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jiaxi</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Wang, Yapei</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Cao, Tingbing</creatorcontrib><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</description><subject>Acrylic Resins - chemistry</subject><subject>Applied sciences</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Exact sciences and technology</subject><subject>Nylons - chemistry</subject><subject>Organic polymers</subject><subject>Photochemistry - methods</subject><subject>Physicochemistry of polymers</subject><subject>Polymers - chemistry</subject><subject>Printing</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgWgpDLwAyoIEQ8C3xPaIKgqViuhQ5ujEtYurNAbbQeLtCWppF3SGs3znoh-hS4LvCKbkvgGOqSpYPEJDUlCcF5KKYzTEgrNc8JIN0FmMa4yxYlydogHlmNGypEM0HXvfZC9OB699m0CnbB5cm1y7yhY-m0AdnIZkssW7CRsfTRtdcl9mO7IyTTaHlExo4zk6sdBEc7HrI_Q2eVyMn_PZ69N0_DDLgfEi5ZJIUWBV91WykmBrQNRKcC45KEFKQTWvGRcKLFBdKCy1BamUtUwsda3YCN1s934E_9mZmKqNi9o0DbTGd7EinAlClKBFT2-3tH81xmBs9RHcBsJ3RXD1m1y1T663V7u1Xb0xy738i6oH1zsAUUNjA7TaxYMTQsqCi4MDHau170Lbp_HPwR8uzYEB</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Peng, Jiaxi</creator><creator>Zhao, Dan</creator><creator>Tang, Xiaofeng</creator><creator>Tong, Fei</creator><creator>Guan, Li</creator><creator>Wang, Yapei</creator><creator>Zhang, Meining</creator><creator>Cao, Tingbing</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130924</creationdate><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><author>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Applied sciences</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Exact sciences and technology</topic><topic>Nylons - chemistry</topic><topic>Organic polymers</topic><topic>Photochemistry - methods</topic><topic>Physicochemistry of polymers</topic><topic>Polymers - chemistry</topic><topic>Printing</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jiaxi</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Wang, Yapei</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Cao, Tingbing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jiaxi</au><au>Zhao, Dan</au><au>Tang, Xiaofeng</au><au>Tong, Fei</au><au>Guan, Li</au><au>Wang, Yapei</au><au>Zhang, Meining</au><au>Cao, Tingbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>29</volume><issue>38</issue><spage>11809</spage><epage>11814</epage><pages>11809-11814</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24032662</pmid><doi>10.1021/la402953s</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-09, Vol.29 (38), p.11809-11814
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1437119725
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acrylic Resins - chemistry
Applied sciences
Dimethylpolysiloxanes - chemistry
Exact sciences and technology
Nylons - chemistry
Organic polymers
Photochemistry - methods
Physicochemistry of polymers
Polymers - chemistry
Printing
Properties and characterization
Solution and gel properties
title Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cool%20Microcontact%20Printing%20To%20Fabricate%20Thermosensitive%20Microgel%20Patterns&rft.jtitle=Langmuir&rft.au=Peng,%20Jiaxi&rft.date=2013-09-24&rft.volume=29&rft.issue=38&rft.spage=11809&rft.epage=11814&rft.pages=11809-11814&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la402953s&rft_dat=%3Cproquest_cross%3E1437119725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437119725&rft_id=info:pmid/24032662&rfr_iscdi=true