Loading…
Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns
A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a co...
Saved in:
Published in: | Langmuir 2013-09, Vol.29 (38), p.11809-11814 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93 |
---|---|
cites | cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93 |
container_end_page | 11814 |
container_issue | 38 |
container_start_page | 11809 |
container_title | Langmuir |
container_volume | 29 |
creator | Peng, Jiaxi Zhao, Dan Tang, Xiaofeng Tong, Fei Guan, Li Wang, Yapei Zhang, Meining Cao, Tingbing |
description | A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology. |
doi_str_mv | 10.1021/la402953s |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1437119725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1437119725</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgWgpDLwAyoIEQ8C3xPaIKgqViuhQ5ujEtYurNAbbQeLtCWppF3SGs3znoh-hS4LvCKbkvgGOqSpYPEJDUlCcF5KKYzTEgrNc8JIN0FmMa4yxYlydogHlmNGypEM0HXvfZC9OB699m0CnbB5cm1y7yhY-m0AdnIZkssW7CRsfTRtdcl9mO7IyTTaHlExo4zk6sdBEc7HrI_Q2eVyMn_PZ69N0_DDLgfEi5ZJIUWBV91WykmBrQNRKcC45KEFKQTWvGRcKLFBdKCy1BamUtUwsda3YCN1s934E_9mZmKqNi9o0DbTGd7EinAlClKBFT2-3tH81xmBs9RHcBsJ3RXD1m1y1T663V7u1Xb0xy738i6oH1zsAUUNjA7TaxYMTQsqCi4MDHau170Lbp_HPwR8uzYEB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437119725</pqid></control><display><type>article</type><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</creator><creatorcontrib>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</creatorcontrib><description>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la402953s</identifier><identifier>PMID: 24032662</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acrylic Resins - chemistry ; Applied sciences ; Dimethylpolysiloxanes - chemistry ; Exact sciences and technology ; Nylons - chemistry ; Organic polymers ; Photochemistry - methods ; Physicochemistry of polymers ; Polymers - chemistry ; Printing ; Properties and characterization ; Solution and gel properties</subject><ispartof>Langmuir, 2013-09, Vol.29 (38), p.11809-11814</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</citedby><cites>FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27788547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24032662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jiaxi</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Wang, Yapei</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Cao, Tingbing</creatorcontrib><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</description><subject>Acrylic Resins - chemistry</subject><subject>Applied sciences</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Exact sciences and technology</subject><subject>Nylons - chemistry</subject><subject>Organic polymers</subject><subject>Photochemistry - methods</subject><subject>Physicochemistry of polymers</subject><subject>Polymers - chemistry</subject><subject>Printing</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgWgpDLwAyoIEQ8C3xPaIKgqViuhQ5ujEtYurNAbbQeLtCWppF3SGs3znoh-hS4LvCKbkvgGOqSpYPEJDUlCcF5KKYzTEgrNc8JIN0FmMa4yxYlydogHlmNGypEM0HXvfZC9OB699m0CnbB5cm1y7yhY-m0AdnIZkssW7CRsfTRtdcl9mO7IyTTaHlExo4zk6sdBEc7HrI_Q2eVyMn_PZ69N0_DDLgfEi5ZJIUWBV91WykmBrQNRKcC45KEFKQTWvGRcKLFBdKCy1BamUtUwsda3YCN1s934E_9mZmKqNi9o0DbTGd7EinAlClKBFT2-3tH81xmBs9RHcBsJ3RXD1m1y1T663V7u1Xb0xy738i6oH1zsAUUNjA7TaxYMTQsqCi4MDHau170Lbp_HPwR8uzYEB</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Peng, Jiaxi</creator><creator>Zhao, Dan</creator><creator>Tang, Xiaofeng</creator><creator>Tong, Fei</creator><creator>Guan, Li</creator><creator>Wang, Yapei</creator><creator>Zhang, Meining</creator><creator>Cao, Tingbing</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130924</creationdate><title>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</title><author>Peng, Jiaxi ; Zhao, Dan ; Tang, Xiaofeng ; Tong, Fei ; Guan, Li ; Wang, Yapei ; Zhang, Meining ; Cao, Tingbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Applied sciences</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Exact sciences and technology</topic><topic>Nylons - chemistry</topic><topic>Organic polymers</topic><topic>Photochemistry - methods</topic><topic>Physicochemistry of polymers</topic><topic>Polymers - chemistry</topic><topic>Printing</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jiaxi</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Tang, Xiaofeng</creatorcontrib><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Wang, Yapei</creatorcontrib><creatorcontrib>Zhang, Meining</creatorcontrib><creatorcontrib>Cao, Tingbing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jiaxi</au><au>Zhao, Dan</au><au>Tang, Xiaofeng</au><au>Tong, Fei</au><au>Guan, Li</au><au>Wang, Yapei</au><au>Zhang, Meining</au><au>Cao, Tingbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>29</volume><issue>38</issue><spage>11809</spage><epage>11814</epage><pages>11809-11814</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>A facile method, cool microcontact printing (cool μCP), of fabricating microgel patterns under ambient conditions is developed. By using spontaneously condensed water on the surface of cold items and the phase transition of polymer microgels below the lower critical solution temperature (LCST), a cool poly(dimethylsiloxane) (PDMS) stamp can be easily decorated with a thin layer of water ink and its pattern can substantially transfer to a substrate that is assembled with microgels. As a proof of concept, one kind of thermosensitive microgel (i.e., poly(N-isopropylacrylamide) (pNIPAM)) is selected to demonstrate our method. A series of pNIPAM microgel patterns with various geometries can be easily generated by featured PDMS stamps through a cool μCP method. The results of control experiment using room-temperature PDMS stamps or patterning the pNIPAM microgel-incorporated fluorescent probe reveal that condensed cold water on a cool PDMS stamp plays an important role when microgel particles are lifted off. In addition, it is also observed that both humidity and contact pressure have effects on the shapes of the pattern fabricated by cool μCP, and more precise or sophisticate patterns can be obtained by adjusting the conditions. It is envisioned that this practically available method, as a good extension to μCP, can facilitate the design of complex patterns, affording great convenience for many inherent applications ranging from photonics to chemical sensing to biotechnology.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24032662</pmid><doi>10.1021/la402953s</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-09, Vol.29 (38), p.11809-11814 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1437119725 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acrylic Resins - chemistry Applied sciences Dimethylpolysiloxanes - chemistry Exact sciences and technology Nylons - chemistry Organic polymers Photochemistry - methods Physicochemistry of polymers Polymers - chemistry Printing Properties and characterization Solution and gel properties |
title | Cool Microcontact Printing To Fabricate Thermosensitive Microgel Patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cool%20Microcontact%20Printing%20To%20Fabricate%20Thermosensitive%20Microgel%20Patterns&rft.jtitle=Langmuir&rft.au=Peng,%20Jiaxi&rft.date=2013-09-24&rft.volume=29&rft.issue=38&rft.spage=11809&rft.epage=11814&rft.pages=11809-11814&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la402953s&rft_dat=%3Cproquest_cross%3E1437119725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-8187509b9b963610fea7b974484a971672c4b3479afa2c5908cfa899ff37dcb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437119725&rft_id=info:pmid/24032662&rfr_iscdi=true |