Loading…

Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning

The growing interest in reducing methane (CH4) emissions from ruminants by dietary means is constrained by the complexity of the microbial community in the rumen of the adult animal. The aim of this work was to study whether intervention in early life of goat kids has an impact on methane emissions...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science 2013-10, Vol.91 (10), p.4832-4840
Main Authors: Abecia, L, Martín-García, A I, Martínez, G, Newbold, C J, Yáñez-Ruiz, D R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4840
container_issue 10
container_start_page 4832
container_title Journal of animal science
container_volume 91
creator Abecia, L
Martín-García, A I
Martínez, G
Newbold, C J
Yáñez-Ruiz, D R
description The growing interest in reducing methane (CH4) emissions from ruminants by dietary means is constrained by the complexity of the microbial community in the rumen of the adult animal. The aim of this work was to study whether intervention in early life of goat kids has an impact on methane emissions and the microbial ecosystem in the rumen and whether the effects persist postweaning. Sixteen doe goats giving birth to 2 kids each were randomly split into 2 experimental groups: 8 does were treated (D+) with bromochloromethane (BCM) after giving birth and over 2 mo, and the other 8 does were not treated (D-). In both groups of does, 1 kid per doe was treated with BCM (k+) for 3 mo, and the other was untreated (k-), resulting in 4 experimental groups: D+k+, D+k-, D-k+, and D-k-. Methane emissions were recorded, and ruminal samples were collected from kids at 2 mo of age (weaning, W) and 1 (W+1) and 4 (W+4) mo later. At W+1 mo, CH4 emissions by k+ kids were 52% and 59% less than untreated kids (in D+ and D- groups, respectively). However, at W+4 mo, only D+k+ kids remained lower (33%) emitters and exhibited greater daily BW gain (146 g/d) compared with the other 3 groups (121.8 g/d). The analysis of the archaeal community structure by Denaturing Gradient Gel Electrophoresis (DGGE)showed a strong effect of BCM treatment on does and kids that persisted only in D+k+ kids. The study showed that the application of BCM during early life of kids modified the archaeal population that colonized the rumen, which resulted in decreased CH4 emissions around weaning. The effect is influenced by the treatment applied to the doe and persisted 3 mo later in D+k+ kids.
doi_str_mv 10.2527/jas.2012-6142
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1438570860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1438570860</sourcerecordid><originalsourceid>FETCH-LOGICAL-p281t-563a5865352177bcbc8473640f4b4f919c511cf9561908b484fc189c6b390fe43</originalsourceid><addsrcrecordid>eNo1UMtKAzEADILYWj16lRy9bM17s0cpvqDoRc8lSbM1dTdZ81Aq-O-uWk_DMA-GAeAMoznhpL7cqjQnCJNKYEYOwBRzwiuKBZ2A45S2aJR4w4_AhNBGcCrlFHw9lBxddsGrDjqfbXy3_oeOBFoVux3sXGthDrBX3g2lU9nCWHrrYe9MDNqNQRO64N2n-g0qv4a9zS_KWxhKHkqGegdf3RpugsoJDiHlDzuW-c0JOGxVl-zpHmfg-eb6aXFXLR9v7xdXy2ogEueKC6q4HBdzgutaG20kq6lgqGWatQ1uDMfYtA0XuEFSM8lag2VjhKYNai2jM3Dx1zvE8FZsyqveJWO7btwYSlphRiWvkRRotJ7vrUX3dr0aoutV3K3-L6Pf4-lt9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1438570860</pqid></control><display><type>article</type><title>Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning</title><source>Oxford Journals Online</source><creator>Abecia, L ; Martín-García, A I ; Martínez, G ; Newbold, C J ; Yáñez-Ruiz, D R</creator><creatorcontrib>Abecia, L ; Martín-García, A I ; Martínez, G ; Newbold, C J ; Yáñez-Ruiz, D R</creatorcontrib><description>The growing interest in reducing methane (CH4) emissions from ruminants by dietary means is constrained by the complexity of the microbial community in the rumen of the adult animal. The aim of this work was to study whether intervention in early life of goat kids has an impact on methane emissions and the microbial ecosystem in the rumen and whether the effects persist postweaning. Sixteen doe goats giving birth to 2 kids each were randomly split into 2 experimental groups: 8 does were treated (D+) with bromochloromethane (BCM) after giving birth and over 2 mo, and the other 8 does were not treated (D-). In both groups of does, 1 kid per doe was treated with BCM (k+) for 3 mo, and the other was untreated (k-), resulting in 4 experimental groups: D+k+, D+k-, D-k+, and D-k-. Methane emissions were recorded, and ruminal samples were collected from kids at 2 mo of age (weaning, W) and 1 (W+1) and 4 (W+4) mo later. At W+1 mo, CH4 emissions by k+ kids were 52% and 59% less than untreated kids (in D+ and D- groups, respectively). However, at W+4 mo, only D+k+ kids remained lower (33%) emitters and exhibited greater daily BW gain (146 g/d) compared with the other 3 groups (121.8 g/d). The analysis of the archaeal community structure by Denaturing Gradient Gel Electrophoresis (DGGE)showed a strong effect of BCM treatment on does and kids that persisted only in D+k+ kids. The study showed that the application of BCM during early life of kids modified the archaeal population that colonized the rumen, which resulted in decreased CH4 emissions around weaning. The effect is influenced by the treatment applied to the doe and persisted 3 mo later in D+k+ kids.</description><identifier>EISSN: 1525-3163</identifier><identifier>DOI: 10.2527/jas.2012-6142</identifier><identifier>PMID: 23965388</identifier><language>eng</language><publisher>United States</publisher><subject>Animal Feed ; Animal Nutritional Physiological Phenomena ; Animals ; Archaea - drug effects ; Archaea - physiology ; Diet - veterinary ; Fermentation ; Goats - growth &amp; development ; Goats - microbiology ; Goats - physiology ; Hydrocarbons, Halogenated - pharmacology ; Methane - metabolism ; Rumen - drug effects ; Rumen - metabolism ; Rumen - microbiology ; Weaning ; Weight Gain</subject><ispartof>Journal of animal science, 2013-10, Vol.91 (10), p.4832-4840</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23965388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abecia, L</creatorcontrib><creatorcontrib>Martín-García, A I</creatorcontrib><creatorcontrib>Martínez, G</creatorcontrib><creatorcontrib>Newbold, C J</creatorcontrib><creatorcontrib>Yáñez-Ruiz, D R</creatorcontrib><title>Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning</title><title>Journal of animal science</title><addtitle>J Anim Sci</addtitle><description>The growing interest in reducing methane (CH4) emissions from ruminants by dietary means is constrained by the complexity of the microbial community in the rumen of the adult animal. The aim of this work was to study whether intervention in early life of goat kids has an impact on methane emissions and the microbial ecosystem in the rumen and whether the effects persist postweaning. Sixteen doe goats giving birth to 2 kids each were randomly split into 2 experimental groups: 8 does were treated (D+) with bromochloromethane (BCM) after giving birth and over 2 mo, and the other 8 does were not treated (D-). In both groups of does, 1 kid per doe was treated with BCM (k+) for 3 mo, and the other was untreated (k-), resulting in 4 experimental groups: D+k+, D+k-, D-k+, and D-k-. Methane emissions were recorded, and ruminal samples were collected from kids at 2 mo of age (weaning, W) and 1 (W+1) and 4 (W+4) mo later. At W+1 mo, CH4 emissions by k+ kids were 52% and 59% less than untreated kids (in D+ and D- groups, respectively). However, at W+4 mo, only D+k+ kids remained lower (33%) emitters and exhibited greater daily BW gain (146 g/d) compared with the other 3 groups (121.8 g/d). The analysis of the archaeal community structure by Denaturing Gradient Gel Electrophoresis (DGGE)showed a strong effect of BCM treatment on does and kids that persisted only in D+k+ kids. The study showed that the application of BCM during early life of kids modified the archaeal population that colonized the rumen, which resulted in decreased CH4 emissions around weaning. The effect is influenced by the treatment applied to the doe and persisted 3 mo later in D+k+ kids.</description><subject>Animal Feed</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>Archaea - drug effects</subject><subject>Archaea - physiology</subject><subject>Diet - veterinary</subject><subject>Fermentation</subject><subject>Goats - growth &amp; development</subject><subject>Goats - microbiology</subject><subject>Goats - physiology</subject><subject>Hydrocarbons, Halogenated - pharmacology</subject><subject>Methane - metabolism</subject><subject>Rumen - drug effects</subject><subject>Rumen - metabolism</subject><subject>Rumen - microbiology</subject><subject>Weaning</subject><subject>Weight Gain</subject><issn>1525-3163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1UMtKAzEADILYWj16lRy9bM17s0cpvqDoRc8lSbM1dTdZ81Aq-O-uWk_DMA-GAeAMoznhpL7cqjQnCJNKYEYOwBRzwiuKBZ2A45S2aJR4w4_AhNBGcCrlFHw9lBxddsGrDjqfbXy3_oeOBFoVux3sXGthDrBX3g2lU9nCWHrrYe9MDNqNQRO64N2n-g0qv4a9zS_KWxhKHkqGegdf3RpugsoJDiHlDzuW-c0JOGxVl-zpHmfg-eb6aXFXLR9v7xdXy2ogEueKC6q4HBdzgutaG20kq6lgqGWatQ1uDMfYtA0XuEFSM8lag2VjhKYNai2jM3Dx1zvE8FZsyqveJWO7btwYSlphRiWvkRRotJ7vrUX3dr0aoutV3K3-L6Pf4-lt9w</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Abecia, L</creator><creator>Martín-García, A I</creator><creator>Martínez, G</creator><creator>Newbold, C J</creator><creator>Yáñez-Ruiz, D R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning</title><author>Abecia, L ; Martín-García, A I ; Martínez, G ; Newbold, C J ; Yáñez-Ruiz, D R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p281t-563a5865352177bcbc8473640f4b4f919c511cf9561908b484fc189c6b390fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal Feed</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>Archaea - drug effects</topic><topic>Archaea - physiology</topic><topic>Diet - veterinary</topic><topic>Fermentation</topic><topic>Goats - growth &amp; development</topic><topic>Goats - microbiology</topic><topic>Goats - physiology</topic><topic>Hydrocarbons, Halogenated - pharmacology</topic><topic>Methane - metabolism</topic><topic>Rumen - drug effects</topic><topic>Rumen - metabolism</topic><topic>Rumen - microbiology</topic><topic>Weaning</topic><topic>Weight Gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abecia, L</creatorcontrib><creatorcontrib>Martín-García, A I</creatorcontrib><creatorcontrib>Martínez, G</creatorcontrib><creatorcontrib>Newbold, C J</creatorcontrib><creatorcontrib>Yáñez-Ruiz, D R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of animal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abecia, L</au><au>Martín-García, A I</au><au>Martínez, G</au><au>Newbold, C J</au><au>Yáñez-Ruiz, D R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning</atitle><jtitle>Journal of animal science</jtitle><addtitle>J Anim Sci</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>91</volume><issue>10</issue><spage>4832</spage><epage>4840</epage><pages>4832-4840</pages><eissn>1525-3163</eissn><abstract>The growing interest in reducing methane (CH4) emissions from ruminants by dietary means is constrained by the complexity of the microbial community in the rumen of the adult animal. The aim of this work was to study whether intervention in early life of goat kids has an impact on methane emissions and the microbial ecosystem in the rumen and whether the effects persist postweaning. Sixteen doe goats giving birth to 2 kids each were randomly split into 2 experimental groups: 8 does were treated (D+) with bromochloromethane (BCM) after giving birth and over 2 mo, and the other 8 does were not treated (D-). In both groups of does, 1 kid per doe was treated with BCM (k+) for 3 mo, and the other was untreated (k-), resulting in 4 experimental groups: D+k+, D+k-, D-k+, and D-k-. Methane emissions were recorded, and ruminal samples were collected from kids at 2 mo of age (weaning, W) and 1 (W+1) and 4 (W+4) mo later. At W+1 mo, CH4 emissions by k+ kids were 52% and 59% less than untreated kids (in D+ and D- groups, respectively). However, at W+4 mo, only D+k+ kids remained lower (33%) emitters and exhibited greater daily BW gain (146 g/d) compared with the other 3 groups (121.8 g/d). The analysis of the archaeal community structure by Denaturing Gradient Gel Electrophoresis (DGGE)showed a strong effect of BCM treatment on does and kids that persisted only in D+k+ kids. The study showed that the application of BCM during early life of kids modified the archaeal population that colonized the rumen, which resulted in decreased CH4 emissions around weaning. The effect is influenced by the treatment applied to the doe and persisted 3 mo later in D+k+ kids.</abstract><cop>United States</cop><pmid>23965388</pmid><doi>10.2527/jas.2012-6142</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1525-3163
ispartof Journal of animal science, 2013-10, Vol.91 (10), p.4832-4840
issn 1525-3163
language eng
recordid cdi_proquest_miscellaneous_1438570860
source Oxford Journals Online
subjects Animal Feed
Animal Nutritional Physiological Phenomena
Animals
Archaea - drug effects
Archaea - physiology
Diet - veterinary
Fermentation
Goats - growth & development
Goats - microbiology
Goats - physiology
Hydrocarbons, Halogenated - pharmacology
Methane - metabolism
Rumen - drug effects
Rumen - metabolism
Rumen - microbiology
Weaning
Weight Gain
title Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutritional%20intervention%20in%20early%20life%20to%20manipulate%20rumen%20microbial%20colonization%20and%20methane%20output%20by%20kid%20goats%20postweaning&rft.jtitle=Journal%20of%20animal%20science&rft.au=Abecia,%20L&rft.date=2013-10-01&rft.volume=91&rft.issue=10&rft.spage=4832&rft.epage=4840&rft.pages=4832-4840&rft.eissn=1525-3163&rft_id=info:doi/10.2527/jas.2012-6142&rft_dat=%3Cproquest_pubme%3E1438570860%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p281t-563a5865352177bcbc8473640f4b4f919c511cf9561908b484fc189c6b390fe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1438570860&rft_id=info:pmid/23965388&rfr_iscdi=true