Loading…

The contribution of risk prediction models to early detection of lung cancer

Low‐dose computed tomography screening is a strategy for early diagnosis of lung cancer. The success of such screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit‐to‐harm ratio of the intervention. To facilitate this, the lung cancer risk predic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of surgical oncology 2013-10, Vol.108 (5), p.304-311
Main Authors: Field, John K., Chen, Ying, Marcus, Michael W., Mcronald, Fiona E., Raji, Olaide Y., Duffy, Stephen W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03
cites cdi_FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03
container_end_page 311
container_issue 5
container_start_page 304
container_title Journal of surgical oncology
container_volume 108
creator Field, John K.
Chen, Ying
Marcus, Michael W.
Mcronald, Fiona E.
Raji, Olaide Y.
Duffy, Stephen W.
description Low‐dose computed tomography screening is a strategy for early diagnosis of lung cancer. The success of such screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit‐to‐harm ratio of the intervention. To facilitate this, the lung cancer risk prediction community has established several risk models with good predictive performance. This review focuses on current progress in risk modelling for lung cancer prediction, with some views on future development. J. Surg. Oncol. 2013 108:304–311. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/jso.23384
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1438575660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083627041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03</originalsourceid><addsrcrecordid>eNp10EFP2zAUB3BrAo3CdtgXmCJxGYfAs53E9hF10AJVOawIiYvlOC8jJY2LnQj67UlpywGJky379_56-hPyi8IpBWBn8-BOGecy-UYGFFQWK1Byjwz6PxYnQsEBOQxhDgBKZcl3csB4f0lBDMhk9oiRdU3rq7xrK9dErox8FZ6ipceisu9PC1dgHaLWRWh8vYoKbNHucN01_yNrGov-B9kvTR3w5_Y8IneXF7PhOJ7cjq6G55PYckWTWJiEZZQJRJ4KqTgXmEqa5QalNIwVZQm5KKFkJRgmjAJqBYIQkgpqkhz4EfmzyV1699xhaPWiChbr2jTouqBpwmUq0ixb0-NPdO463_TbrZVgKZUy6dXJRlnvQvBY6qWvFsavNAW9rlj3Fev3inv7e5vY5QssPuSu0x6cbcBLVePq6yR9_e92FxlvJqrQ4uvHhPFPOhNcpPp-OtIPfx8uxzfDqZ7yNw9ekz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437251884</pqid></control><display><type>article</type><title>The contribution of risk prediction models to early detection of lung cancer</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Field, John K. ; Chen, Ying ; Marcus, Michael W. ; Mcronald, Fiona E. ; Raji, Olaide Y. ; Duffy, Stephen W.</creator><creatorcontrib>Field, John K. ; Chen, Ying ; Marcus, Michael W. ; Mcronald, Fiona E. ; Raji, Olaide Y. ; Duffy, Stephen W.</creatorcontrib><description>Low‐dose computed tomography screening is a strategy for early diagnosis of lung cancer. The success of such screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit‐to‐harm ratio of the intervention. To facilitate this, the lung cancer risk prediction community has established several risk models with good predictive performance. This review focuses on current progress in risk modelling for lung cancer prediction, with some views on future development. J. Surg. Oncol. 2013 108:304–311. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0022-4790</identifier><identifier>EISSN: 1096-9098</identifier><identifier>DOI: 10.1002/jso.23384</identifier><identifier>PMID: 23996507</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Early Detection of Cancer ; early diagnosis ; Female ; Humans ; Lung cancer ; lung neoplasms ; Lung Neoplasms - diagnosis ; Male ; Models, Statistical ; Risk ; risk assessment ; Risk Reduction Behavior ; screening ; statistical model ; Tomography, X-Ray Computed</subject><ispartof>Journal of surgical oncology, 2013-10, Vol.108 (5), p.304-311</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03</citedby><cites>FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23996507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Field, John K.</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Marcus, Michael W.</creatorcontrib><creatorcontrib>Mcronald, Fiona E.</creatorcontrib><creatorcontrib>Raji, Olaide Y.</creatorcontrib><creatorcontrib>Duffy, Stephen W.</creatorcontrib><title>The contribution of risk prediction models to early detection of lung cancer</title><title>Journal of surgical oncology</title><addtitle>J. Surg. Oncol</addtitle><description>Low‐dose computed tomography screening is a strategy for early diagnosis of lung cancer. The success of such screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit‐to‐harm ratio of the intervention. To facilitate this, the lung cancer risk prediction community has established several risk models with good predictive performance. This review focuses on current progress in risk modelling for lung cancer prediction, with some views on future development. J. Surg. Oncol. 2013 108:304–311. © 2013 Wiley Periodicals, Inc.</description><subject>Early Detection of Cancer</subject><subject>early diagnosis</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>lung neoplasms</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Male</subject><subject>Models, Statistical</subject><subject>Risk</subject><subject>risk assessment</subject><subject>Risk Reduction Behavior</subject><subject>screening</subject><subject>statistical model</subject><subject>Tomography, X-Ray Computed</subject><issn>0022-4790</issn><issn>1096-9098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10EFP2zAUB3BrAo3CdtgXmCJxGYfAs53E9hF10AJVOawIiYvlOC8jJY2LnQj67UlpywGJky379_56-hPyi8IpBWBn8-BOGecy-UYGFFQWK1Byjwz6PxYnQsEBOQxhDgBKZcl3csB4f0lBDMhk9oiRdU3rq7xrK9dErox8FZ6ipceisu9PC1dgHaLWRWh8vYoKbNHucN01_yNrGov-B9kvTR3w5_Y8IneXF7PhOJ7cjq6G55PYckWTWJiEZZQJRJ4KqTgXmEqa5QalNIwVZQm5KKFkJRgmjAJqBYIQkgpqkhz4EfmzyV1699xhaPWiChbr2jTouqBpwmUq0ixb0-NPdO463_TbrZVgKZUy6dXJRlnvQvBY6qWvFsavNAW9rlj3Fev3inv7e5vY5QssPuSu0x6cbcBLVePq6yR9_e92FxlvJqrQ4uvHhPFPOhNcpPp-OtIPfx8uxzfDqZ7yNw9ekz8</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Field, John K.</creator><creator>Chen, Ying</creator><creator>Marcus, Michael W.</creator><creator>Mcronald, Fiona E.</creator><creator>Raji, Olaide Y.</creator><creator>Duffy, Stephen W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201310</creationdate><title>The contribution of risk prediction models to early detection of lung cancer</title><author>Field, John K. ; Chen, Ying ; Marcus, Michael W. ; Mcronald, Fiona E. ; Raji, Olaide Y. ; Duffy, Stephen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Early Detection of Cancer</topic><topic>early diagnosis</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>lung neoplasms</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Male</topic><topic>Models, Statistical</topic><topic>Risk</topic><topic>risk assessment</topic><topic>Risk Reduction Behavior</topic><topic>screening</topic><topic>statistical model</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Field, John K.</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Marcus, Michael W.</creatorcontrib><creatorcontrib>Mcronald, Fiona E.</creatorcontrib><creatorcontrib>Raji, Olaide Y.</creatorcontrib><creatorcontrib>Duffy, Stephen W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of surgical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Field, John K.</au><au>Chen, Ying</au><au>Marcus, Michael W.</au><au>Mcronald, Fiona E.</au><au>Raji, Olaide Y.</au><au>Duffy, Stephen W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The contribution of risk prediction models to early detection of lung cancer</atitle><jtitle>Journal of surgical oncology</jtitle><addtitle>J. Surg. Oncol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>108</volume><issue>5</issue><spage>304</spage><epage>311</epage><pages>304-311</pages><issn>0022-4790</issn><eissn>1096-9098</eissn><abstract>Low‐dose computed tomography screening is a strategy for early diagnosis of lung cancer. The success of such screening will be dependent upon identifying populations at sufficient risk in order to maximise the benefit‐to‐harm ratio of the intervention. To facilitate this, the lung cancer risk prediction community has established several risk models with good predictive performance. This review focuses on current progress in risk modelling for lung cancer prediction, with some views on future development. J. Surg. Oncol. 2013 108:304–311. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23996507</pmid><doi>10.1002/jso.23384</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4790
ispartof Journal of surgical oncology, 2013-10, Vol.108 (5), p.304-311
issn 0022-4790
1096-9098
language eng
recordid cdi_proquest_miscellaneous_1438575660
source Wiley-Blackwell Read & Publish Collection
subjects Early Detection of Cancer
early diagnosis
Female
Humans
Lung cancer
lung neoplasms
Lung Neoplasms - diagnosis
Male
Models, Statistical
Risk
risk assessment
Risk Reduction Behavior
screening
statistical model
Tomography, X-Ray Computed
title The contribution of risk prediction models to early detection of lung cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20contribution%20of%20risk%20prediction%20models%20to%20early%20detection%20of%20lung%20cancer&rft.jtitle=Journal%20of%20surgical%20oncology&rft.au=Field,%20John%20K.&rft.date=2013-10&rft.volume=108&rft.issue=5&rft.spage=304&rft.epage=311&rft.pages=304-311&rft.issn=0022-4790&rft.eissn=1096-9098&rft_id=info:doi/10.1002/jso.23384&rft_dat=%3Cproquest_cross%3E3083627041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3914-7a426127ee35789337e5816bae88a22dff0b7f0f2f0a27a901c7e0778171a4b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437251884&rft_id=info:pmid/23996507&rfr_iscdi=true