Loading…
Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations
Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with w...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2013-08, Vol.88 (8), p.1436-1447 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3 |
container_end_page | 1447 |
container_issue | 8 |
container_start_page | 1436 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 88 |
creator | Vane, Leland M. Alvarez, Franklin R. |
description | Background
Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation.
Results
Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%.
Conclusion
In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA |
doi_str_mv | 10.1002/jctb.4087 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439222776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958230761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkF1_xE58pCvYsqoAiUUcLccf1EsSp3ZSmn_Vn4h3E_WAxGk0M8-8844my14juEYQ4s1RDfW6gFX5JFshyMu8YAw-zVYQsyrHtKTPsxcxHiGErMJslT1cTXVwGtzJ3gcQh-D63nW_8jnvTWiNHJzvQB-8MjECm8rBKH9nwgRkp4E2N5MOM-QtQHk9DrLzzbkplRl8ZzZLbWOGm3PPBt8C7ZpxMEDejsaPEUSf0qQS1-CbDANAKS5Lv7t2bM4r4svsmZVNNK-WeJH9-PTxsL3Kr7_uPm8_XOeqIDSdTWqmoOKIUVQpySllsFSYS4O1haywkmrOiOKYK811RaS2VhNUQ46lhopcZO9m3XR4MhgH0bqoTNPI7uRWoIJwjHFZsoS--Qc9-jF0yZ1AJWMVoYyhRL2fKRV8jMFY0QfXyjAJBMXpd-L0O3H6XWLfLooyKtnYIDvl4uMALimGsCgSt5m5P64x0_8FxX57uFyU83nCxcHcP07I8FuwkpRU_PyyE5d4d9iT_UFA8hc5Z7t0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766835661</pqid></control><display><type>article</type><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Vane, Leland M. ; Alvarez, Franklin R.</creator><creatorcontrib>Vane, Leland M. ; Alvarez, Franklin R.</creatorcontrib><description>Background
Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation.
Results
Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%.
Conclusion
In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4087</identifier><identifier>CODEN: JCTBDC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>ABE ; Applied sciences ; Aqueous solutions ; biofuel ; Biological and medical sciences ; Biotechnology ; butanol ; Chemical engineering ; dehydration ; Distillation ; Energy conservation ; Ethanol ; Exact sciences and technology ; fermentation ; Fundamental and applied biological sciences. Psychology ; Membrane separation (reverse osmosis, dialysis...) ; Methods. Procedures. Technologies ; Others ; vapor permeation ; Various methods and equipments</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2013-08, Vol.88 (8), p.1436-1447</ispartof><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2014 INIST-CNRS</rights><rights>2013 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</citedby><cites>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27520044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vane, Leland M.</creatorcontrib><creatorcontrib>Alvarez, Franklin R.</creatorcontrib><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>Background
Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation.
Results
Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%.
Conclusion
In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</description><subject>ABE</subject><subject>Applied sciences</subject><subject>Aqueous solutions</subject><subject>biofuel</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>butanol</subject><subject>Chemical engineering</subject><subject>dehydration</subject><subject>Distillation</subject><subject>Energy conservation</subject><subject>Ethanol</subject><subject>Exact sciences and technology</subject><subject>fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>vapor permeation</subject><subject>Various methods and equipments</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkF1_xE58pCvYsqoAiUUcLccf1EsSp3ZSmn_Vn4h3E_WAxGk0M8-8844my14juEYQ4s1RDfW6gFX5JFshyMu8YAw-zVYQsyrHtKTPsxcxHiGErMJslT1cTXVwGtzJ3gcQh-D63nW_8jnvTWiNHJzvQB-8MjECm8rBKH9nwgRkp4E2N5MOM-QtQHk9DrLzzbkplRl8ZzZLbWOGm3PPBt8C7ZpxMEDejsaPEUSf0qQS1-CbDANAKS5Lv7t2bM4r4svsmZVNNK-WeJH9-PTxsL3Kr7_uPm8_XOeqIDSdTWqmoOKIUVQpySllsFSYS4O1haywkmrOiOKYK811RaS2VhNUQ46lhopcZO9m3XR4MhgH0bqoTNPI7uRWoIJwjHFZsoS--Qc9-jF0yZ1AJWMVoYyhRL2fKRV8jMFY0QfXyjAJBMXpd-L0O3H6XWLfLooyKtnYIDvl4uMALimGsCgSt5m5P64x0_8FxX57uFyU83nCxcHcP07I8FuwkpRU_PyyE5d4d9iT_UFA8hc5Z7t0</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Vane, Leland M.</creator><creator>Alvarez, Franklin R.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201308</creationdate><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><author>Vane, Leland M. ; Alvarez, Franklin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ABE</topic><topic>Applied sciences</topic><topic>Aqueous solutions</topic><topic>biofuel</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>butanol</topic><topic>Chemical engineering</topic><topic>dehydration</topic><topic>Distillation</topic><topic>Energy conservation</topic><topic>Ethanol</topic><topic>Exact sciences and technology</topic><topic>fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>vapor permeation</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vane, Leland M.</creatorcontrib><creatorcontrib>Alvarez, Franklin R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vane, Leland M.</au><au>Alvarez, Franklin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2013-08</date><risdate>2013</risdate><volume>88</volume><issue>8</issue><spage>1436</spage><epage>1447</epage><pages>1436-1447</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><coden>JCTBDC</coden><abstract>Background
Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation.
Results
Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%.
Conclusion
In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.4087</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2013-08, Vol.88 (8), p.1436-1447 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439222776 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | ABE Applied sciences Aqueous solutions biofuel Biological and medical sciences Biotechnology butanol Chemical engineering dehydration Distillation Energy conservation Ethanol Exact sciences and technology fermentation Fundamental and applied biological sciences. Psychology Membrane separation (reverse osmosis, dialysis...) Methods. Procedures. Technologies Others vapor permeation Various methods and equipments |
title | Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20vapor%20stripping-vapor%20permeation%20process%20for%20recovery%20and%20dehydration%20of%201-butanol%20and%20acetone/butanol/ethanol%20from%20dilute%20aqueous%20solutions.%20Part%201.%20Process%20Simulations&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Vane,%20Leland%20M.&rft.date=2013-08&rft.volume=88&rft.issue=8&rft.spage=1436&rft.epage=1447&rft.pages=1436-1447&rft.issn=0268-2575&rft.eissn=1097-4660&rft.coden=JCTBDC&rft_id=info:doi/10.1002/jctb.4087&rft_dat=%3Cproquest_cross%3E3958230761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766835661&rft_id=info:pmid/&rfr_iscdi=true |