Loading…

Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations

Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2013-08, Vol.88 (8), p.1436-1447
Main Authors: Vane, Leland M., Alvarez, Franklin R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3
cites cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3
container_end_page 1447
container_issue 8
container_start_page 1436
container_title Journal of chemical technology and biotechnology (1986)
container_volume 88
creator Vane, Leland M.
Alvarez, Franklin R.
description Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation. Results Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%. Conclusion In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA
doi_str_mv 10.1002/jctb.4087
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439222776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3958230761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkF1_xE58pCvYsqoAiUUcLccf1EsSp3ZSmn_Vn4h3E_WAxGk0M8-8844my14juEYQ4s1RDfW6gFX5JFshyMu8YAw-zVYQsyrHtKTPsxcxHiGErMJslT1cTXVwGtzJ3gcQh-D63nW_8jnvTWiNHJzvQB-8MjECm8rBKH9nwgRkp4E2N5MOM-QtQHk9DrLzzbkplRl8ZzZLbWOGm3PPBt8C7ZpxMEDejsaPEUSf0qQS1-CbDANAKS5Lv7t2bM4r4svsmZVNNK-WeJH9-PTxsL3Kr7_uPm8_XOeqIDSdTWqmoOKIUVQpySllsFSYS4O1haywkmrOiOKYK811RaS2VhNUQ46lhopcZO9m3XR4MhgH0bqoTNPI7uRWoIJwjHFZsoS--Qc9-jF0yZ1AJWMVoYyhRL2fKRV8jMFY0QfXyjAJBMXpd-L0O3H6XWLfLooyKtnYIDvl4uMALimGsCgSt5m5P64x0_8FxX57uFyU83nCxcHcP07I8FuwkpRU_PyyE5d4d9iT_UFA8hc5Z7t0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766835661</pqid></control><display><type>article</type><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Vane, Leland M. ; Alvarez, Franklin R.</creator><creatorcontrib>Vane, Leland M. ; Alvarez, Franklin R.</creatorcontrib><description>Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation. Results Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%. Conclusion In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4087</identifier><identifier>CODEN: JCTBDC</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ABE ; Applied sciences ; Aqueous solutions ; biofuel ; Biological and medical sciences ; Biotechnology ; butanol ; Chemical engineering ; dehydration ; Distillation ; Energy conservation ; Ethanol ; Exact sciences and technology ; fermentation ; Fundamental and applied biological sciences. Psychology ; Membrane separation (reverse osmosis, dialysis...) ; Methods. Procedures. Technologies ; Others ; vapor permeation ; Various methods and equipments</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2013-08, Vol.88 (8), p.1436-1447</ispartof><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2014 INIST-CNRS</rights><rights>2013 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</citedby><cites>FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27520044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vane, Leland M.</creatorcontrib><creatorcontrib>Alvarez, Franklin R.</creatorcontrib><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation. Results Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%. Conclusion In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</description><subject>ABE</subject><subject>Applied sciences</subject><subject>Aqueous solutions</subject><subject>biofuel</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>butanol</subject><subject>Chemical engineering</subject><subject>dehydration</subject><subject>Distillation</subject><subject>Energy conservation</subject><subject>Ethanol</subject><subject>Exact sciences and technology</subject><subject>fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Methods. Procedures. Technologies</subject><subject>Others</subject><subject>vapor permeation</subject><subject>Various methods and equipments</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkF1_xE58pCvYsqoAiUUcLccf1EsSp3ZSmn_Vn4h3E_WAxGk0M8-8844my14juEYQ4s1RDfW6gFX5JFshyMu8YAw-zVYQsyrHtKTPsxcxHiGErMJslT1cTXVwGtzJ3gcQh-D63nW_8jnvTWiNHJzvQB-8MjECm8rBKH9nwgRkp4E2N5MOM-QtQHk9DrLzzbkplRl8ZzZLbWOGm3PPBt8C7ZpxMEDejsaPEUSf0qQS1-CbDANAKS5Lv7t2bM4r4svsmZVNNK-WeJH9-PTxsL3Kr7_uPm8_XOeqIDSdTWqmoOKIUVQpySllsFSYS4O1haywkmrOiOKYK811RaS2VhNUQ46lhopcZO9m3XR4MhgH0bqoTNPI7uRWoIJwjHFZsoS--Qc9-jF0yZ1AJWMVoYyhRL2fKRV8jMFY0QfXyjAJBMXpd-L0O3H6XWLfLooyKtnYIDvl4uMALimGsCgSt5m5P64x0_8FxX57uFyU83nCxcHcP07I8FuwkpRU_PyyE5d4d9iT_UFA8hc5Z7t0</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Vane, Leland M.</creator><creator>Alvarez, Franklin R.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201308</creationdate><title>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</title><author>Vane, Leland M. ; Alvarez, Franklin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ABE</topic><topic>Applied sciences</topic><topic>Aqueous solutions</topic><topic>biofuel</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>butanol</topic><topic>Chemical engineering</topic><topic>dehydration</topic><topic>Distillation</topic><topic>Energy conservation</topic><topic>Ethanol</topic><topic>Exact sciences and technology</topic><topic>fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Methods. Procedures. Technologies</topic><topic>Others</topic><topic>vapor permeation</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vane, Leland M.</creatorcontrib><creatorcontrib>Alvarez, Franklin R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vane, Leland M.</au><au>Alvarez, Franklin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2013-08</date><risdate>2013</risdate><volume>88</volume><issue>8</issue><spage>1436</spage><epage>1447</epage><pages>1436-1447</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><coden>JCTBDC</coden><abstract>Background Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor–liquid equilibrium and partial miscibility with water. In previous work, a process integrating steam stripping, vapor compression, and vapor permeation separation was proposed for separating ethanol from water. Such a membrane assisted vapor stripping (MAVS) process is considered in this work for 1‐butanol/water and acetone/butanol/ethanol/water (ABE/water) separation. Results Using process simulations, the earlier MAVS design was estimated to require 6.2 MJ‐fuel kg−1‐butanol to produce 99.5 wt% 1‐butanol from a 1 wt% 1‐butanol feed, representing an energy savings of 63% relative to a benchmark distillation/decanter system. Adding a fractional condensation step to the original MAVS design is predicted to reduce energy demand to only 4.8 MJ‐fuel kg−1‐butanol and reduce membrane area by 65%. Conclusion In the hybrid distillation/membrane MAVS systems, the stripping column provides high butanol recovery and low effluent concentration while the vapor compression and membrane steps enable the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Addition of the dephlegmator condenser reduces both compressor size and membrane area. Published 2013. This article is a U.S. Government work and is in the public domain in the USA</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.4087</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2013-08, Vol.88 (8), p.1436-1447
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_miscellaneous_1439222776
source Wiley-Blackwell Read & Publish Collection
subjects ABE
Applied sciences
Aqueous solutions
biofuel
Biological and medical sciences
Biotechnology
butanol
Chemical engineering
dehydration
Distillation
Energy conservation
Ethanol
Exact sciences and technology
fermentation
Fundamental and applied biological sciences. Psychology
Membrane separation (reverse osmosis, dialysis...)
Methods. Procedures. Technologies
Others
vapor permeation
Various methods and equipments
title Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20vapor%20stripping-vapor%20permeation%20process%20for%20recovery%20and%20dehydration%20of%201-butanol%20and%20acetone/butanol/ethanol%20from%20dilute%20aqueous%20solutions.%20Part%201.%20Process%20Simulations&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Vane,%20Leland%20M.&rft.date=2013-08&rft.volume=88&rft.issue=8&rft.spage=1436&rft.epage=1447&rft.pages=1436-1447&rft.issn=0268-2575&rft.eissn=1097-4660&rft.coden=JCTBDC&rft_id=info:doi/10.1002/jctb.4087&rft_dat=%3Cproquest_cross%3E3958230761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4357-43b6c0c916518ca955607c29ae2df064fa5d963c929cd9d83adffd31b092ad0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766835661&rft_id=info:pmid/&rfr_iscdi=true