Loading…

Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites

M5 muscarinic acetylcholine receptors expressed on ventral tegmental dopamine (DA) neurons are needed for opioid activation of DA outputs. Here, the M5 receptor gene was bilaterally transfected into neurons in the ventral tegmental area (VTA) or the adjacent rostromedial tegmental nucleus (RMTg) in...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2013-09, Vol.38 (5), p.2774-2785
Main Authors: Wasserman, David I., Wang, Haoran G., Rashid, Asim J., Josselyn, Sheena A., Yeomans, John S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3
cites cdi_FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3
container_end_page 2785
container_issue 5
container_start_page 2774
container_title The European journal of neuroscience
container_volume 38
creator Wasserman, David I.
Wang, Haoran G.
Rashid, Asim J.
Josselyn, Sheena A.
Yeomans, John S.
description M5 muscarinic acetylcholine receptors expressed on ventral tegmental dopamine (DA) neurons are needed for opioid activation of DA outputs. Here, the M5 receptor gene was bilaterally transfected into neurons in the ventral tegmental area (VTA) or the adjacent rostromedial tegmental nucleus (RMTg) in mice by means of a Herpes simplex viral vector (HSV) to increase the effect of endogenous acetylcholine. Three days after HSV‐M5 gene infusion in VTA sites, morphine‐induced locomotion more than doubled at two doses, while saline‐induced locomotion was unaffected. When the HSV‐M5 gene was infused into the adjacent RMTg, morphine‐induced locomotion was strongly inhibited. The sharp boundary between these opposing effects was found where tyrosine hydroxylase (TH) and cholinesterase labelling decreases (−4.00 mm posterior to bregma). The same HSV‐M5 gene transfections in M5 knockout mice induced even stronger inhibitory behavioural effects in RMTg but more variability in VTA sites due to stereotypy. The VTA sites where HSV‐M5 increased morphine‐induced locomotion receive direct inputs from many RMTg GAD‐positive neurons, and from pontine ChAT‐positive neurons, as shown by cholera‐toxin B retrograde tracing. Therefore, morphine‐induced locomotion was decreased by M5 receptor gene expression in RMTg GABA neurons that directly inhibit VTA DA neurons. Conversely, enhancing M5 receptor gene expression on VTA DA neurons increased morphine‐induced locomotion via cholinergic inputs. M5‐HSV transfections of VTA dopamine and non‐dopamine neurons increased morphine‐induced locomotion in wild‐type and M5 knockout mice. M5‐HSV transfections of RMTg GABA neurons reduced morphine‐induced locomotion in the wild‐types and knockouts. Cholera‐toxin B retrograde tracing from VTA identified RMTg GABA neurons, and caudal PT and LDT cholinergic neurons as inputs.
doi_str_mv 10.1111/ejn.12279
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439225181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429639543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3</originalsourceid><addsrcrecordid>eNqN0c9vFCEUB3BiNHatHvwHDBcTPUzLj2EYjmZTq2ZTTdTojTDMo6UysMKMtv-92N3WeDCRyyPkw3vJ-yL0lJIjWs8xXMYjyphU99CKth1plOj6-2hFlOBNT7uvB-hRKZeEkL5rxUN0wLiUnEqyQlfrixR8hHzuLbYpzjkFnByeUt5e1PfGx3GxMOKQbJrS7FPEPuKcSpUTjN4EPMP5BHGut7jYAEvBPyCXm1L7_QVMBoOLn6E8Rg-cCQWe7Osh-vz65NP6TbN5f_p2_WrT2FYx1TBLKLdEKC5cP0rSkmGgA-edMuCUo5b0Y5VG9IOBgZoWOFAiFSOidSN3_BC92PXd5vR9gTLryRcLIZgIaSmatlwxJmhP_4My1XElWl7pyx21dRMlg9Pb7CeTrzUl-ncmumaibzKp9tm-7TLUjd3J2xAqeL4HplgTXDbR-vLHSakE62R1xzv30we4_vdEffLu7HZ0s_vhywxXdz9M_qZrPyn0l7NT_fGDJHTDuZb8Fwg7s_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429639543</pqid></control><display><type>article</type><title>Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites</title><source>Wiley</source><creator>Wasserman, David I. ; Wang, Haoran G. ; Rashid, Asim J. ; Josselyn, Sheena A. ; Yeomans, John S.</creator><creatorcontrib>Wasserman, David I. ; Wang, Haoran G. ; Rashid, Asim J. ; Josselyn, Sheena A. ; Yeomans, John S.</creatorcontrib><description>M5 muscarinic acetylcholine receptors expressed on ventral tegmental dopamine (DA) neurons are needed for opioid activation of DA outputs. Here, the M5 receptor gene was bilaterally transfected into neurons in the ventral tegmental area (VTA) or the adjacent rostromedial tegmental nucleus (RMTg) in mice by means of a Herpes simplex viral vector (HSV) to increase the effect of endogenous acetylcholine. Three days after HSV‐M5 gene infusion in VTA sites, morphine‐induced locomotion more than doubled at two doses, while saline‐induced locomotion was unaffected. When the HSV‐M5 gene was infused into the adjacent RMTg, morphine‐induced locomotion was strongly inhibited. The sharp boundary between these opposing effects was found where tyrosine hydroxylase (TH) and cholinesterase labelling decreases (−4.00 mm posterior to bregma). The same HSV‐M5 gene transfections in M5 knockout mice induced even stronger inhibitory behavioural effects in RMTg but more variability in VTA sites due to stereotypy. The VTA sites where HSV‐M5 increased morphine‐induced locomotion receive direct inputs from many RMTg GAD‐positive neurons, and from pontine ChAT‐positive neurons, as shown by cholera‐toxin B retrograde tracing. Therefore, morphine‐induced locomotion was decreased by M5 receptor gene expression in RMTg GABA neurons that directly inhibit VTA DA neurons. Conversely, enhancing M5 receptor gene expression on VTA DA neurons increased morphine‐induced locomotion via cholinergic inputs. M5‐HSV transfections of VTA dopamine and non‐dopamine neurons increased morphine‐induced locomotion in wild‐type and M5 knockout mice. M5‐HSV transfections of RMTg GABA neurons reduced morphine‐induced locomotion in the wild‐types and knockouts. Cholera‐toxin B retrograde tracing from VTA identified RMTg GABA neurons, and caudal PT and LDT cholinergic neurons as inputs.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.12279</identifier><identifier>PMID: 23773170</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - metabolism ; Analgesics ; Animals ; Biological and medical sciences ; dopamine ; Dopaminergic Neurons - metabolism ; Fundamental and applied biological sciences. Psychology ; GABA ; GABAergic Neurons - metabolism ; Locomotion - drug effects ; Male ; Medical sciences ; Mice ; Mice, Knockout ; Mice, Transgenic ; Morphine - pharmacology ; mouse ; muscarinic ; Neuropharmacology ; opioid ; Pedunculopontine Tegmental Nucleus - drug effects ; Pedunculopontine Tegmental Nucleus - physiology ; Pharmacology. Drug treatments ; Receptor, Muscarinic M5 - genetics ; Receptor, Muscarinic M5 - metabolism ; Ventral Tegmental Area - drug effects ; Ventral Tegmental Area - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>The European journal of neuroscience, 2013-09, Vol.38 (5), p.2774-2785</ispartof><rights>2013 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3</citedby><cites>FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27795267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23773170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasserman, David I.</creatorcontrib><creatorcontrib>Wang, Haoran G.</creatorcontrib><creatorcontrib>Rashid, Asim J.</creatorcontrib><creatorcontrib>Josselyn, Sheena A.</creatorcontrib><creatorcontrib>Yeomans, John S.</creatorcontrib><title>Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>M5 muscarinic acetylcholine receptors expressed on ventral tegmental dopamine (DA) neurons are needed for opioid activation of DA outputs. Here, the M5 receptor gene was bilaterally transfected into neurons in the ventral tegmental area (VTA) or the adjacent rostromedial tegmental nucleus (RMTg) in mice by means of a Herpes simplex viral vector (HSV) to increase the effect of endogenous acetylcholine. Three days after HSV‐M5 gene infusion in VTA sites, morphine‐induced locomotion more than doubled at two doses, while saline‐induced locomotion was unaffected. When the HSV‐M5 gene was infused into the adjacent RMTg, morphine‐induced locomotion was strongly inhibited. The sharp boundary between these opposing effects was found where tyrosine hydroxylase (TH) and cholinesterase labelling decreases (−4.00 mm posterior to bregma). The same HSV‐M5 gene transfections in M5 knockout mice induced even stronger inhibitory behavioural effects in RMTg but more variability in VTA sites due to stereotypy. The VTA sites where HSV‐M5 increased morphine‐induced locomotion receive direct inputs from many RMTg GAD‐positive neurons, and from pontine ChAT‐positive neurons, as shown by cholera‐toxin B retrograde tracing. Therefore, morphine‐induced locomotion was decreased by M5 receptor gene expression in RMTg GABA neurons that directly inhibit VTA DA neurons. Conversely, enhancing M5 receptor gene expression on VTA DA neurons increased morphine‐induced locomotion via cholinergic inputs. M5‐HSV transfections of VTA dopamine and non‐dopamine neurons increased morphine‐induced locomotion in wild‐type and M5 knockout mice. M5‐HSV transfections of RMTg GABA neurons reduced morphine‐induced locomotion in the wild‐types and knockouts. Cholera‐toxin B retrograde tracing from VTA identified RMTg GABA neurons, and caudal PT and LDT cholinergic neurons as inputs.</description><subject>Acetylcholine - metabolism</subject><subject>Analgesics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>dopamine</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA</subject><subject>GABAergic Neurons - metabolism</subject><subject>Locomotion - drug effects</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Morphine - pharmacology</subject><subject>mouse</subject><subject>muscarinic</subject><subject>Neuropharmacology</subject><subject>opioid</subject><subject>Pedunculopontine Tegmental Nucleus - drug effects</subject><subject>Pedunculopontine Tegmental Nucleus - physiology</subject><subject>Pharmacology. Drug treatments</subject><subject>Receptor, Muscarinic M5 - genetics</subject><subject>Receptor, Muscarinic M5 - metabolism</subject><subject>Ventral Tegmental Area - drug effects</subject><subject>Ventral Tegmental Area - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0c9vFCEUB3BiNHatHvwHDBcTPUzLj2EYjmZTq2ZTTdTojTDMo6UysMKMtv-92N3WeDCRyyPkw3vJ-yL0lJIjWs8xXMYjyphU99CKth1plOj6-2hFlOBNT7uvB-hRKZeEkL5rxUN0wLiUnEqyQlfrixR8hHzuLbYpzjkFnByeUt5e1PfGx3GxMOKQbJrS7FPEPuKcSpUTjN4EPMP5BHGut7jYAEvBPyCXm1L7_QVMBoOLn6E8Rg-cCQWe7Osh-vz65NP6TbN5f_p2_WrT2FYx1TBLKLdEKC5cP0rSkmGgA-edMuCUo5b0Y5VG9IOBgZoWOFAiFSOidSN3_BC92PXd5vR9gTLryRcLIZgIaSmatlwxJmhP_4My1XElWl7pyx21dRMlg9Pb7CeTrzUl-ncmumaibzKp9tm-7TLUjd3J2xAqeL4HplgTXDbR-vLHSakE62R1xzv30we4_vdEffLu7HZ0s_vhywxXdz9M_qZrPyn0l7NT_fGDJHTDuZb8Fwg7s_w</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Wasserman, David I.</creator><creator>Wang, Haoran G.</creator><creator>Rashid, Asim J.</creator><creator>Josselyn, Sheena A.</creator><creator>Yeomans, John S.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201309</creationdate><title>Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites</title><author>Wasserman, David I. ; Wang, Haoran G. ; Rashid, Asim J. ; Josselyn, Sheena A. ; Yeomans, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylcholine - metabolism</topic><topic>Analgesics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>dopamine</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA</topic><topic>GABAergic Neurons - metabolism</topic><topic>Locomotion - drug effects</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Morphine - pharmacology</topic><topic>mouse</topic><topic>muscarinic</topic><topic>Neuropharmacology</topic><topic>opioid</topic><topic>Pedunculopontine Tegmental Nucleus - drug effects</topic><topic>Pedunculopontine Tegmental Nucleus - physiology</topic><topic>Pharmacology. Drug treatments</topic><topic>Receptor, Muscarinic M5 - genetics</topic><topic>Receptor, Muscarinic M5 - metabolism</topic><topic>Ventral Tegmental Area - drug effects</topic><topic>Ventral Tegmental Area - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasserman, David I.</creatorcontrib><creatorcontrib>Wang, Haoran G.</creatorcontrib><creatorcontrib>Rashid, Asim J.</creatorcontrib><creatorcontrib>Josselyn, Sheena A.</creatorcontrib><creatorcontrib>Yeomans, John S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasserman, David I.</au><au>Wang, Haoran G.</au><au>Rashid, Asim J.</au><au>Josselyn, Sheena A.</au><au>Yeomans, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2013-09</date><risdate>2013</risdate><volume>38</volume><issue>5</issue><spage>2774</spage><epage>2785</epage><pages>2774-2785</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>M5 muscarinic acetylcholine receptors expressed on ventral tegmental dopamine (DA) neurons are needed for opioid activation of DA outputs. Here, the M5 receptor gene was bilaterally transfected into neurons in the ventral tegmental area (VTA) or the adjacent rostromedial tegmental nucleus (RMTg) in mice by means of a Herpes simplex viral vector (HSV) to increase the effect of endogenous acetylcholine. Three days after HSV‐M5 gene infusion in VTA sites, morphine‐induced locomotion more than doubled at two doses, while saline‐induced locomotion was unaffected. When the HSV‐M5 gene was infused into the adjacent RMTg, morphine‐induced locomotion was strongly inhibited. The sharp boundary between these opposing effects was found where tyrosine hydroxylase (TH) and cholinesterase labelling decreases (−4.00 mm posterior to bregma). The same HSV‐M5 gene transfections in M5 knockout mice induced even stronger inhibitory behavioural effects in RMTg but more variability in VTA sites due to stereotypy. The VTA sites where HSV‐M5 increased morphine‐induced locomotion receive direct inputs from many RMTg GAD‐positive neurons, and from pontine ChAT‐positive neurons, as shown by cholera‐toxin B retrograde tracing. Therefore, morphine‐induced locomotion was decreased by M5 receptor gene expression in RMTg GABA neurons that directly inhibit VTA DA neurons. Conversely, enhancing M5 receptor gene expression on VTA DA neurons increased morphine‐induced locomotion via cholinergic inputs. M5‐HSV transfections of VTA dopamine and non‐dopamine neurons increased morphine‐induced locomotion in wild‐type and M5 knockout mice. M5‐HSV transfections of RMTg GABA neurons reduced morphine‐induced locomotion in the wild‐types and knockouts. Cholera‐toxin B retrograde tracing from VTA identified RMTg GABA neurons, and caudal PT and LDT cholinergic neurons as inputs.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23773170</pmid><doi>10.1111/ejn.12279</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2013-09, Vol.38 (5), p.2774-2785
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_1439225181
source Wiley
subjects Acetylcholine - metabolism
Analgesics
Animals
Biological and medical sciences
dopamine
Dopaminergic Neurons - metabolism
Fundamental and applied biological sciences. Psychology
GABA
GABAergic Neurons - metabolism
Locomotion - drug effects
Male
Medical sciences
Mice
Mice, Knockout
Mice, Transgenic
Morphine - pharmacology
mouse
muscarinic
Neuropharmacology
opioid
Pedunculopontine Tegmental Nucleus - drug effects
Pedunculopontine Tegmental Nucleus - physiology
Pharmacology. Drug treatments
Receptor, Muscarinic M5 - genetics
Receptor, Muscarinic M5 - metabolism
Ventral Tegmental Area - drug effects
Ventral Tegmental Area - physiology
Vertebrates: nervous system and sense organs
title Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholinergic%20control%20of%20morphine-induced%20locomotion%20in%20rostromedial%20tegmental%20nucleus%20versus%20ventral%20tegmental%20area%20sites&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Wasserman,%20David%20I.&rft.date=2013-09&rft.volume=38&rft.issue=5&rft.spage=2774&rft.epage=2785&rft.pages=2774-2785&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.12279&rft_dat=%3Cproquest_cross%3E1429639543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4929-2c013c05935f8d7040bb1b3369aef9f1c08dc49a58baeb1a4e3e10792054fd3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1429639543&rft_id=info:pmid/23773170&rfr_iscdi=true