Loading…
Quantitative Atlas of Blood–Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset
The purpose of this study was to determine the protein amounts of blood–brain barrier (BBB) permeability-related transporters, receptors, and tight junction proteins in Sprague Dawley and Wistar rats and common marmoset, and also to investigate inter-species and inter-strain differences across roden...
Saved in:
Published in: | Journal of pharmaceutical sciences 2013-09, Vol.102 (9), p.3343-3355 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study was to determine the protein amounts of blood–brain barrier (BBB) permeability-related transporters, receptors, and tight junction proteins in Sprague Dawley and Wistar rats and common marmoset, and also to investigate inter-species and inter-strain differences across rodents and primates. Quantification of target proteins in isolated brain capillaries was conducted by liquid chromatography–tandem mass spectrometry-based quantitative targeted absolute proteomics, with in silico peptide selection. Most target proteins showed inter-rodent, inter-primate species, and inter-rat strain differences of less than 2-fold. Comparison of rat and human BBB showed that P-glycoprotein, multidrug resistance-associated protein 4, monocarboxylate transporter 1, l-type amino acid transporter, and organic anion transporter 3 exhibited differences of more than two-fold in protein abundance, whereas the amounts of breast cancer resistance protein, glucose transporter 1, and insulin receptor were similar in rat and human. In contrast, the differences between marmoset and human BBB were less than 2-fold for almost all measured proteins. Thus, the molecular basis of BBB functions may be similar in marmoset and human, whereas that of rats shows significant differences. The marmoset may be a good model to access in vivo human BBB permeability characteristics, as an alternative to rat and macaque monkey. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:3343–3355, 2013 |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1002/jps.23575 |