Loading…

Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change

We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2013-10, Vol.19 (10), p.3069-3081
Main Authors: Al-Chokhachy, Robert, Alder, Jay, Hostetler, Steven, Gresswell, Robert, Shepard, Bradley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.12262