Loading…
Neural stem cells-trends and advances
For many years, accepted dogma held that brain is a static organ with no possibility of regeneration of cells in injured or diseased human brain. However, recent preclinical reports have shown regenerative potential of neural stem cells using various injury models. This has resulted in renewed hope...
Saved in:
Published in: | Journal of cellular biochemistry 2013-04, Vol.114 (4), p.764-772 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For many years, accepted dogma held that brain is a static organ with no possibility of regeneration of cells in injured or diseased human brain. However, recent preclinical reports have shown regenerative potential of neural stem cells using various injury models. This has resulted in renewed hope for those suffering from spinal cord injury and neural damage. As the potential of stem cell therapy gained impact, these claims, in particular, led to widespread enthusiasm that acute and chronic injury of the nervous system would soon be a problem of the past. The devastation caused by injury or diseases of the brain and spinal cord led to wide premature acceptance that “neural stem cells (NSCs)” derived from embryonic, fetal or adult sources would soon be effective in reversing neural and spinal trauma. However, neural therapy with stem cells has not been realized to its fullest extent. Although, discrete population of regenerative stem cells seems to be present in specific areas of human brain, the function of these cells is unclear. However, similar cells in animals seem to play important role in postnatal growth as well as recovery of neural tissue from injury, anoxia, or disease. J. Cell. Biochem. 114: 764–772, 2013. © 2012 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0730-2312 1097-4644 |
DOI: | 10.1002/jcb.24436 |