Loading…

Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland

In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans—type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 2013-09, Vol.353 (3), p.473-481
Main Authors: Horiguchi, Kotaro, Syaidah, Rahimi, Fujiwara, Ken, Tsukada, Takehiro, Ramadhani, Dini, Jindatip, Depicha, Kikuchi, Motoshi, Yashiro, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans—type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, −2, −3 and −4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin– and Ki-67–immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-013-1641-7