Loading…

Potassium persulfate-mediated preparation of conducting polypyrrole/polyacrylonitrile composite fibers: Humidity and temperature-sensing properties

Conducting polypyrrole (PPy)/polyacrylonitrile (PAN) composite fibers were prepared by the polymerization of pyrrole in the presence of PAN fibers with potassium persulfate in an acidic aqueous solution. We obtained composite fibers containing concentrations of PPy as high as 1.14% and having surfac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2012-09, Vol.125 (5), p.3977-3985
Main Authors: Acar, Handan, Karakışla, Meral, Saçak, Mehmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conducting polypyrrole (PPy)/polyacrylonitrile (PAN) composite fibers were prepared by the polymerization of pyrrole in the presence of PAN fibers with potassium persulfate in an acidic aqueous solution. We obtained composite fibers containing concentrations of PPy as high as 1.14% and having surface resistivities as low as 0.6 kΩ/cm2 by changing the polymerization parameters, including the temperature and concentrations of pyrrole and oxidant. The tensile strength of 10.02 N/m2 and breaking elongation of 32.68% for the pure PAN fiber increased up to 10.45 N/m2 and 33.23%, respectively, for the composite fiber containing 0.13% PPy. The change in the resistivity of the PPy/PAN composite fiber during heating–cooling cycles in the temperature range of +5 to 120°C was examined. Scanning electron microscopy and optical microscopy images of the composite fibers showed that the PPy coating was restricted to the surfaces of the PAN fibers. Surface resistivity measurements, Fourier transform infrared spectroscopy, and thermogravimetric analysis techniques were also used to characterize the composite fibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
ISSN:0021-8995
1097-4628
DOI:10.1002/app.36552