Loading…
MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution
In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to...
Saved in:
Published in: | International journal of computer applications 2013-01, Vol.73 (5), p.8-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3 |
---|---|
cites | |
container_end_page | 14 |
container_issue | 5 |
container_start_page | 8 |
container_title | International journal of computer applications |
container_volume | 73 |
creator | W Mahmoud, Mohamed A Soliman, Ahmed A Abd Ellah, Ahmed H El-sagheer, Rashad M |
description | In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes. |
doi_str_mv | 10.5120/12735-9617 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439729179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439729179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCo65i39BwIsI1aZpm-Sodf6ADUGn15Cmry6jbWbSgv3vzTYPYi4vh897vPdF6JzE1xlJ4huSMJpFIifsCE1iwbKIc86O__xP0cz7TRweFUku0gmSy2JZ4BXodWe-BsC9xW_9UI24XwO-UyN4ozo8971pVW9shwdvuk_8Ctq6Cn-oZgCPa2fbfcPCtuob3xvfO1MOO3-GTmrVeJj91il6f5iviqdo8fL4XNwuIk0YZREvk5IrpWtQNdd5RsusBp4SAgIEjSGhKad5yiotNIeKMSo0yVMaJKi8UnSKLg9zt86GO3wvW-M1NI3qwA5ekpQKlgjCRKAX_-jGDq4L2wWV5EGkMQvq6qC0s947qOXWhQzcKEksd3HLfdxyFzf9AZk3cMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426793407</pqid></control><display><type>article</type><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><source>Freely Accessible Science Journals</source><creator>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</creator><creatorcontrib>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</creatorcontrib><description>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/12735-9617</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Approximation ; Bayesian analysis ; Computer simulation ; Confidence intervals ; Estimators ; Mathematical models ; Maximum likelihood estimators ; Monte Carlo methods</subject><ispartof>International journal of computer applications, 2013-01, Vol.73 (5), p.8-14</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>W Mahmoud, Mohamed A</creatorcontrib><creatorcontrib>Soliman, Ahmed A</creatorcontrib><creatorcontrib>Abd Ellah, Ahmed H</creatorcontrib><creatorcontrib>El-sagheer, Rashad M</creatorcontrib><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><title>International journal of computer applications</title><description>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo methods</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgCo65i39BwIsI1aZpm-Sodf6ADUGn15Cmry6jbWbSgv3vzTYPYi4vh897vPdF6JzE1xlJ4huSMJpFIifsCE1iwbKIc86O__xP0cz7TRweFUku0gmSy2JZ4BXodWe-BsC9xW_9UI24XwO-UyN4ozo8971pVW9shwdvuk_8Ctq6Cn-oZgCPa2fbfcPCtuob3xvfO1MOO3-GTmrVeJj91il6f5iviqdo8fL4XNwuIk0YZREvk5IrpWtQNdd5RsusBp4SAgIEjSGhKad5yiotNIeKMSo0yVMaJKi8UnSKLg9zt86GO3wvW-M1NI3qwA5ekpQKlgjCRKAX_-jGDq4L2wWV5EGkMQvq6qC0s947qOXWhQzcKEksd3HLfdxyFzf9AZk3cMc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>W Mahmoud, Mohamed A</creator><creator>Soliman, Ahmed A</creator><creator>Abd Ellah, Ahmed H</creator><creator>El-sagheer, Rashad M</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><author>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo methods</topic><toplevel>online_resources</toplevel><creatorcontrib>W Mahmoud, Mohamed A</creatorcontrib><creatorcontrib>Soliman, Ahmed A</creatorcontrib><creatorcontrib>Abd Ellah, Ahmed H</creatorcontrib><creatorcontrib>El-sagheer, Rashad M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>W Mahmoud, Mohamed A</au><au>Soliman, Ahmed A</au><au>Abd Ellah, Ahmed H</au><au>El-sagheer, Rashad M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>73</volume><issue>5</issue><spage>8</spage><epage>14</epage><pages>8-14</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/12735-9617</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.73 (5), p.8-14 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439729179 |
source | Freely Accessible Science Journals |
subjects | Approximation Bayesian analysis Computer simulation Confidence intervals Estimators Mathematical models Maximum likelihood estimators Monte Carlo methods |
title | MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MCMC%20Technique%20to%20Study%20the%20Bayesian%20Estimation%20using%20Record%20Values%20from%20the%20Lomax%20Distribution&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=W%20Mahmoud,%20Mohamed%20A&rft.date=2013-01-01&rft.volume=73&rft.issue=5&rft.spage=8&rft.epage=14&rft.pages=8-14&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/12735-9617&rft_dat=%3Cproquest_cross%3E1439729179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1426793407&rft_id=info:pmid/&rfr_iscdi=true |