Loading…

MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution

In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2013-01, Vol.73 (5), p.8-14
Main Authors: W Mahmoud, Mohamed A, Soliman, Ahmed A, Abd Ellah, Ahmed H, El-sagheer, Rashad M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3
cites
container_end_page 14
container_issue 5
container_start_page 8
container_title International journal of computer applications
container_volume 73
creator W Mahmoud, Mohamed A
Soliman, Ahmed A
Abd Ellah, Ahmed H
El-sagheer, Rashad M
description In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.
doi_str_mv 10.5120/12735-9617
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439729179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439729179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCo65i39BwIsI1aZpm-Sodf6ADUGn15Cmry6jbWbSgv3vzTYPYi4vh897vPdF6JzE1xlJ4huSMJpFIifsCE1iwbKIc86O__xP0cz7TRweFUku0gmSy2JZ4BXodWe-BsC9xW_9UI24XwO-UyN4ozo8971pVW9shwdvuk_8Ctq6Cn-oZgCPa2fbfcPCtuob3xvfO1MOO3-GTmrVeJj91il6f5iviqdo8fL4XNwuIk0YZREvk5IrpWtQNdd5RsusBp4SAgIEjSGhKad5yiotNIeKMSo0yVMaJKi8UnSKLg9zt86GO3wvW-M1NI3qwA5ekpQKlgjCRKAX_-jGDq4L2wWV5EGkMQvq6qC0s947qOXWhQzcKEksd3HLfdxyFzf9AZk3cMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426793407</pqid></control><display><type>article</type><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><source>Freely Accessible Science Journals</source><creator>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</creator><creatorcontrib>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</creatorcontrib><description>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/12735-9617</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Approximation ; Bayesian analysis ; Computer simulation ; Confidence intervals ; Estimators ; Mathematical models ; Maximum likelihood estimators ; Monte Carlo methods</subject><ispartof>International journal of computer applications, 2013-01, Vol.73 (5), p.8-14</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>W Mahmoud, Mohamed A</creatorcontrib><creatorcontrib>Soliman, Ahmed A</creatorcontrib><creatorcontrib>Abd Ellah, Ahmed H</creatorcontrib><creatorcontrib>El-sagheer, Rashad M</creatorcontrib><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><title>International journal of computer applications</title><description>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>Monte Carlo methods</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgCo65i39BwIsI1aZpm-Sodf6ADUGn15Cmry6jbWbSgv3vzTYPYi4vh897vPdF6JzE1xlJ4huSMJpFIifsCE1iwbKIc86O__xP0cz7TRweFUku0gmSy2JZ4BXodWe-BsC9xW_9UI24XwO-UyN4ozo8971pVW9shwdvuk_8Ctq6Cn-oZgCPa2fbfcPCtuob3xvfO1MOO3-GTmrVeJj91il6f5iviqdo8fL4XNwuIk0YZREvk5IrpWtQNdd5RsusBp4SAgIEjSGhKad5yiotNIeKMSo0yVMaJKi8UnSKLg9zt86GO3wvW-M1NI3qwA5ekpQKlgjCRKAX_-jGDq4L2wWV5EGkMQvq6qC0s947qOXWhQzcKEksd3HLfdxyFzf9AZk3cMc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>W Mahmoud, Mohamed A</creator><creator>Soliman, Ahmed A</creator><creator>Abd Ellah, Ahmed H</creator><creator>El-sagheer, Rashad M</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</title><author>W Mahmoud, Mohamed A ; Soliman, Ahmed A ; Abd Ellah, Ahmed H ; El-sagheer, Rashad M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>Monte Carlo methods</topic><toplevel>online_resources</toplevel><creatorcontrib>W Mahmoud, Mohamed A</creatorcontrib><creatorcontrib>Soliman, Ahmed A</creatorcontrib><creatorcontrib>Abd Ellah, Ahmed H</creatorcontrib><creatorcontrib>El-sagheer, Rashad M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>W Mahmoud, Mohamed A</au><au>Soliman, Ahmed A</au><au>Abd Ellah, Ahmed H</au><au>El-sagheer, Rashad M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>73</volume><issue>5</issue><spage>8</spage><epage>14</epage><pages>8-14</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this paper, the Bayes estimators of the unknown parameters of the Lomax distribution under the assumptions of gamma priors on both the shape and scale parameters are considered. The Bayes estimators cannot be obtained in explicit forms. So we propose Markov Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and in turn computing the Bayes estimators. Point estimation and confidence intervals based on maximum likelihood and bootstrap methods are also proposed. The approximate Bayes estimators obtained under the assumptions of non-informative priors, are compared with the maximum likelihood estimators using Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/12735-9617</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.73 (5), p.8-14
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1439729179
source Freely Accessible Science Journals
subjects Approximation
Bayesian analysis
Computer simulation
Confidence intervals
Estimators
Mathematical models
Maximum likelihood estimators
Monte Carlo methods
title MCMC Technique to Study the Bayesian Estimation using Record Values from the Lomax Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MCMC%20Technique%20to%20Study%20the%20Bayesian%20Estimation%20using%20Record%20Values%20from%20the%20Lomax%20Distribution&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=W%20Mahmoud,%20Mohamed%20A&rft.date=2013-01-01&rft.volume=73&rft.issue=5&rft.spage=8&rft.epage=14&rft.pages=8-14&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/12735-9617&rft_dat=%3Cproquest_cross%3E1439729179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1737-8b2b8aacfeaf8c653b5fe8411e9e930e23483647dc9c8ed7739c1643653ea6da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1426793407&rft_id=info:pmid/&rfr_iscdi=true